Abstract

With the introduction of an ever-larger share of renewable but intermittent energy sources on electrical grids, hydraulic turbines are more often used as network stabilizers. In such a role, they are generally operated in off-design operations like speed-no-load (SNL). No energy is extracted from the flow at SNL operation, but the runner rotates at the synchronous speed linked to the electrical grid. The flow inside the runner of low-head turbines operating at SNL is often dominated by a columnar vortex array that may induce damaging pressure fluctuations. This paper presents the study of a control device to mitigate those vortices. At SNL, the small guide vane opening leads to a high swirl in the runner generating secondary flows such as columnar vortices and backflows. The proposed concept is to move SNL operation toward a higher guide vane opening and hence lower swirl, preventing the formation of a columnar vortex array. Lowering the input swirl of SNL is accomplished by opening up the guide vanes while using a control device to limit the discharge. The control device, like a spoiler on an aircraft wing, is introduced on the guide vanes to generate added head losses, significantly decreasing the discharge in high guide vane angles. This paper compares the hydrodynamics of the flow in a propeller turbine with different spoiler geometries. The study is based on both Reynolds-averaged Navier–Stokes (RANS) and unsteady RANS (URANS) flow simulations. It highlights how such devices can successfully mitigate columnar vortices and their associated pressure fluctuations on runner blades.

References

1.
REN21
,
2021
, “
Renewables 2021 Global Status Report
,” Renewable Energy Policy Network for the 21st Century, Paris, France, Report.
2.
Roberts
,
J. F.
,
1947
, “
Characteristics of Hydraulic Turbines That Effect Operating Efficiency
,”
Electr. Eng.
,
66
(
6
), pp.
542
546
.10.1109/EE.1947.6443564
3.
Seidel
,
U.
,
Mende
,
C.
,
Hübner
,
B.
,
Weber
,
W.
, and
Otto
,
A.
,
2014
, “
Dynamic Loads in Francis Runners and Their Impact on Fatigue Life
,”
IOP Conf. Ser. Earth Environ. Sci.
,
22
(
3
), p.
032054
.10.1088/1755-1315/22/3/032054
4.
Mende
,
C.
,
Weber
,
W.
, and
Seidel
,
U.
,
2016
, “
Progress in Load Prediction for Speed-No-Load Operation in Francis Turbines
,”
IOP Conf. Ser. Earth Environ. Sci.
,
49
(
6
), p.
062017
.10.1088/1755-1315/49/6/062017
5.
Morissette
,
J.-F.
,
Chamberland-Lauzon
,
J.
,
Nennemann
,
B.
,
Monette
,
C.
,
Giroux
,
A.-M.
,
Coutu
,
A.
, and
Nicolle
,
J.
,
2016
, “
Stress Predictions in a Francis Turbine at No-Load Operating Regime
,”
IOP Conf. Ser. Earth Environ. Sci.
,
49
(
7
), p.
072016
.10.1088/1755-1315/49/7/072016
6.
Houde
,
S.
,
Dumas
,
G.
, and
Deschênes
,
C.
,
2018
, “
Experimental and Numerical Investigations on the Origins of Rotating Stall in a Propeller Turbine Runner Operating in No-Load Conditions
,”
ASME J. Fluids Eng.
,
140
(
11
), p. 111104.10.1115/1.4039713
7.
Pulpitel
,
L.
,
Skotak
,
A.
, and
Koutnik
,
S.
,
1996
, “
Vortices Rotating in the Vaneless Space of a Kaplan Turbine Operating Under Off-Cam High Swirl Flow Conditions
,”
Proceedings of 18th IAHR Symposium on Hydraulic Machinery and Systems
, Valencia, Spain, Sept. 6–19, pp.
925
934
.10.1007/978-94-010-9385-9_94
8.
Skotak
,
A.
,
1996
, “
Modelling of the Swirl Flow in a Kaplan Turbine Operating Under Off-Cam Conditions
,”
International Journal of Hydropower and Dams Status Meeting
, Lausanne, Switzerland, July 8–11, pp.
197
204
.
9.
Bettocchi
,
R.
,
Cantore
,
G.
,
Magri
,
L.
, and
Ubaldi
,
M.
,
1982
, “
Analyse Expérimentale de L'écoulement Dans la Zone Axiale Des Canaux Adducteurs Des Turbines Hélices
,”
La Houille Blanche
,
68
(
7–8
), pp.
599
606
.10.1051/lhb/1982046
10.
Chamberland-Lauzon
,
J.
,
DiSiciullo
,
J.
,
Monette
,
C.
,
Nennemann
,
B.
, and
Afara
,
S.
,
2021
, “
Francis Turbine Dynamic Stresses Measurements at Model and Prototype Scales
,”
IOP Conf. Ser. Earth Environ. Sci.
,
774
(
1
), p.
012081
.10.1088/1755-1315/774/1/012081
11.
Monette
,
C.
,
Marmont
,
H.
,
Chamberland-Lauzon
,
J.
,
Skagerstrand
,
A.
,
Coutu
,
A.
, and
Carlevi
,
J.
,
2016
, “
Cost of Enlarged Operating Zone for an Existing Francis Runner
,”
IOP Conf. Ser. Earth Environ. Sci.
,
49
(
7
), p.
072018
.10.1088/1755-1315/49/7/072018
12.
Monette
,
C.
,
Chamberland-Lauzon
,
J.
, and
Nennemann
,
B.
,
2022
, “
Validation of Deep Part Load Dynamic Stresses for Axial Runners
,”
IOP Conf. Ser. Earth Environ. Sci.
,
1079
(
1
), p.
012100
.10.1088/1755-1315/1079/1/012100
13.
Yang
,
J.
,
Wang
,
Z. W.
,
Zhou
,
X. Z.
,
Gao
,
L.
, and
Xu
,
H. X.
,
2014
, “
The Flow Field Investigations of No Load Conditions in Axial Flow Fixed-Blade Turbine
,”
IOP Conf. Ser. Earth Environ. Sci.
,
22
(
3
), p.
032028
.10.1088/1755-1315/22/3/032028
14.
Guarga
,
R.
,
Zarate
,
F.
,
Algorta
,
D.
,
Cataldo
,
J.
,
Luccino
,
C.
,
Liscia
,
S.
, and
Schenzer
,
D.
,
1991
, “
Diagnosis of the Cause of Mechanical Vibrations in 135 MW Kaplan Turbines at Partial Load Operation
,”
Proceedings of 24th IAHR Congress
, Madrid, Spain, Sept. 9–13, pp.
181
190
.
15.
Sotnikov
,
A.
,
Lyukonen
,
Y.
, and
Murzin
,
P.
,
1982
, “
Vibrations and Pressure Pulsations in Kaplan and Propeller Hydroturbines and Their Model Study
,”
Proceedings of IAHR Operating Problems of Pump Stations and Power Plants
, Amsterdam, The Netherlands, Sept. 13–17, pp. 42-1–42-11.
16.
Huang
,
X.
,
Chamberland-Lauzon
,
J.
,
Oram
,
C.
,
Klopfer
,
A.
, and
Ruchonnet
,
N.
,
2014
, “
Fatigue Analyses of the Prototype Francis Runners Based on Site Measurements and Simulation
,”
IOP Conf. Ser. Earth Environ. Sci.
,
22
(
1
), p.
012014
.10.1088/1755-1315/22/1/012014
17.
Hübner
,
B.
,
Weber
,
W.
, and
Seidel
,
U.
,
2016
, “
The Role of Fluid-Structure Interaction for Safety and Lifetime Prediction in Hydraulic Machinery
,”
IOP Conf. Ser. Earth Environ. Sci.
,
49
(
7
), p.
072007
.10.1088/1755-1315/49/7/072007
18.
IEC,
2019
,
Hydraulic Turbines, Storage Pumps and Pump-Turbines—Model Acceptance Tests
,
International Electrotechnical Commission
,
Geneva, Switzerland
, Standard No. IEC 60193.
19.
Fortin
,
M.
,
Nennemann
,
B.
,
Deschênes
,
C.
, and
Houde
,
S.
,
2022
, “
Classification of the Hydraulic Behavior Along the No-Load Curve of Francis Turbines
,”
ASME J. Fluids Eng.
,
144
(
3
), p.
031205
.10.1115/1.4051895
20.
Dörfler
,
P.
,
Sick
,
M.
, and
Coutu
,
A.
,
2013
,
Flow-Induced Pulsation and Vibration in Hydroelectric Machinery: Engineer's Guidebook for Planning, Design and Troubleshooting
,
Springer
,
London
.
21.
Nennemann
,
B.
,
Melot
,
M.
,
Monette
,
C.
,
Gauthier
,
M.
,
Afara
,
S.
,
Chamberland-Lauzon
,
J.
, and
Jurvansuu
,
T.
,
2021
, “
Shear and Vortex Instabilities at Deep Part Load of Hydraulic Turbines and Their Numerical Prediction
,”
IOP Conf. Ser. Earth Environ. Sci.
,
774
(
1
), p.
012114
.10.1088/1755-1315/774/1/012114
22.
Fortin
,
M.
,
Nennemann
,
B.
, and
Houde
,
S.
,
2022
, “
Characterization of No-Load Conditions for a High Head Francis Turbine Based on the Swirl Level
,”
IOP Conf. Ser. Earth Environ. Sci.
,
1079
(
1
), p.
012010
.10.1088/1755-1315/1079/1/012010
23.
Leibovich
,
S.
, and
Stewartson
,
K.
,
1983
, “
A Sufficient Condition for the Instability of Columnar Vortices
,”
J. Fluid Mech.
,
126
(
1
), pp.
335
356
.10.1017/S0022112083000191
24.
Houde
,
S.
,
Dumas
,
G.
,
Maciel
,
Y.
, and
Deschênes
,
C.
,
2019
, “
Investigations of Rotating Stall Inception in a Propeller Turbine Runner Operating in Low-Load Conditions
,”
IOP Conf. Ser. Earth Environ. Sci.
,
240
(
2
), p.
022021
.10.1088/1755-1315/240/2/022021
25.
Pulpitel
,
L.
,
1993
, “
The Dynamic Behavior of a Kaplan Turbine Operating Under Non-Standard Conditions
,”
Proceedings of Sixth IAHR International Meeting Work Group on the Behavior of Hydraulic Machinery Under Steady Oscillatory Conditions
, Lausanne, Switzerland, Sept. 8–10.
26.
Nicolle
,
J.
,
Giroux
,
A. P.
, and
Morissette
,
J. F.
,
2014
, “
CFD Configurations for Hydraulic Turbine Startup
,”
IOP Conf. Ser. Earth Environ. Sci.
,
22
(
3
), p.
032021
.10.1088/1755-1315/22/3/032021
27.
Liu
,
X.
,
Luo
,
X.
, and
Wang
,
Z.
,
2016
, “
A Review on Fatigue Damage Mechanism in Hydro Turbines
,”
Renewable Sustainable Energy Rev.
,
54
, pp.
1
14
.10.1016/j.rser.2015.09.025
28.
Bourgeois
,
J.
,
Trivedi
,
C.
, and
Houde
,
S.
,
2022
, “
Inception of Columnar Vortex Array in a Medium-Head Francis Turbine at Speed-No-Load
,”
Proceedings of 21st Viennahydro International Seminar on Hydropower Plants
, Austria, Vienna.
29.
Gilis
,
A.
,
2022
, “
Visualisation Expérimentale de L'écoulement Dans la Turbine Tr-Francis Pendant Les Régimes de Fonctionnement à Vide
,” M.Sc. thesis,
Université Laval
, Canada.
30.
Nennemann
,
B.
,
Morissette
,
J. F.
,
Chamberland-Lauzon
,
J.
,
Monette
,
C.
,
Braun
,
O.
,
Melot
,
M.
,
Coutu
,
A.
,
Nicolle
,
J.
, and
Giroux
,
A.-M.
,
2014
, “
Challenges in Dynamic Pressure and Stress Predictions at No-Load Operation in Hydraulic Turbines
,”
IOP Conf. Ser. Earth Environ. Sci.
,
22
(
3
), p.
032055
.10.1088/1755-1315/22/3/032055
31.
Yamamoto
,
K.
,
Roubaty
,
M.
,
Morisod
,
M.
,
Coulaud
,
M.
, and
Houde
,
S.
,
2021
, “
Numerical Investigation of Flow Instabilities in Speed No-Loas Operation of a Bulb Turbine
,”
IOP Conf. Ser. Earth Environ. Sci.
,
774
(
1
), p.
012115
.10.1088/1755-1315/774/1/012115
32.
Wurm
,
E.
, and
Nennemann
,
B.
,
2019
, “
Power Generation Plant Having a Kaplan, Bulb, Diagonal Flow or Propeller Turbine
,” U.S. Patent No. 10, 995,727 B2.
33.
Zhang
,
W. W.
,
Wu
,
G. K.
,
Feng
,
J. J.
,
Zhu
,
G. J.
, and
Luo
,
X. Q.
,
2018
, “
Influence of Double-Row Guide Vane Cascade on Performance of a Francis Turbine
,”
IOP Conf. Ser. Earth Environ. Sci.
,
163
(
1
), p.
012093
.10.1088/1755-1315/163/1/012093
34.
Nakashima
,
T.
,
Matsuzaka
,
R.
,
Miyagawa
,
K.
,
Yonezawa
,
K.
, and
Tsujimoto
,
Y.
,
2014
, “
Study on Flow Instability and Countermeasure in a Draft Tube With Swirling Flow
,”
IOP Conf. Ser. Earth Environ. Sci.
,
22
(
3
), p.
032007
.10.1088/1755-1315/22/3/032007
35.
Unterluggauer
,
J.
,
Maly
,
A.
, and
Doujak
,
E.
,
2019
, “
Investigation on the Impact of Air Admission in a Prototype Francis Turbine at Low-Load Operation
,”
Energies
,
12
(
15
), p.
2893
.10.3390/en12152893
36.
Von Locquenghien
,
F.
, and
Leibing
,
B.
,
2022
, “
An Engineering Approach for the Prediction of Fatigue Damage in the Part Load Regime
,”
IOP Conf. Ser. Earth Environ. Sci.
,
1079
(
1
), p.
012090
.10.1088/1755-1315/1079/1/012090
37.
Susan-Resiga
,
R.
,
Ciocan
,
G. D.
,
Anton
,
I.
, and
Avellan
,
F.
,
2006
, “
Analysis of the Swirling Flow Downstream a Francis Turbine Runner
,”
ASME J. Fluids Eng.
,
128
(
1
), pp.
177
189
.10.1115/1.2137341
38.
Susan-Resiga
,
R.
,
Muntean
,
S.
,
Hasmatuchi
,
V.
,
Anton
,
I.
, and
Avellan
,
F.
,
2010
, “
Analysis and Prevention of Vortex Breakdown in the Simplified Discharge Cone of a Francis Turbine
,”
ASME J. Fluids Eng.
,
132
(
5
), p.
051102
.10.1115/1.4001486
39.
Cassidy
,
J. J.
,
1969
,
Experimental Study and Analysis of Draft-Tube Surging
,
U.S. Department of the Interior, Bureau of Reclamation
,
Denver, CO
, Report No. HYD-591.
40.
Cassidy
,
J. J.
, and
Falvey
,
H. T.
,
1970
, “
Observations of Unsteady Flow Arising After Vortex Breakdown
,”
J. Fluid Mech.
,
41
(
4
), pp.
727
736
.10.1017/S0022112070000873
41.
Wahl
,
T. L.
,
1990
, “
Draft Tube Surging Hydraulic Model Study
,” M.Sc. thesis,
Colorado State University
,
Fort Collins, CO
.
42.
Deschênes
,
C.
,
Ciocan
,
G. D.
,
Henau
,
V. D.
,
Flemming
,
F.
,
Huang
,
J.
,
Koller
,
M.
,
Naime
,
F. A.
,
Page
,
M.
,
Qian
,
R.
, and
Vu
,
T.
,
2010
, “
General Overview of the AxialT Project: A Partnership for Low Head Turbine Developments
,”
IOP Conf. Ser. Earth Environ. Sci.
,
12
(
1
), p.
012043
.10.1088/1755-1315/12/1/012043
43.
Gagnon
,
J.-M.
,
Aeschlimann
,
V.
,
Houde
,
S.
,
Flemming
,
F.
,
Coulson
,
S.
, and
Deschenes
,
C.
,
2012
, “
Experimental Investigation of Draft Tube Inlet Velocity Field of a Propeller Turbine
,”
ASME J. Fluids Eng.
,
134
(
10
), p. 101102.10.1115/1.4007523
44.
Vu
,
T. C.
,
Koller
,
M.
,
Gauthier
,
M.
, and
Deschênes
,
C.
,
2010
, “
Flow Simulation and Efficiency Hill Chart Prediction for a Propeller Turbine
,”
IOP Conf. Ser. Earth Environ. Sci.
,
12
(
1
), p.
012040
.10.1088/1755-1315/12/1/012040
45.
Menter
,
F. R.
, and
Egorov
,
Y.
,
2010
, “
The Scale-Adaptive Simulation Method for Unsteady Turbulent Flow Predictions. Part 1: Theory and Model Description
,”
Flow Turbul. Combust.
,
85
(
1
), pp.
113
138
.10.1007/s10494-010-9264-5
46.
Decaix
,
J.
,
Dreyer
,
M.
,
Balarac
,
G.
,
Farhat
,
M.
, and
Münch
,
C.
,
2018
, “
Rans Computations of a Confined Cavitating Tip-Leakage Vortex
,”
Eur. J. Mech./B Fluids
,
67
, pp.
198
210
.10.1016/j.euromechflu.2017.09.004
47.
Fortin
,
M.
,
Nennemann
,
B.
,
Houde
,
S.
, and
Deschênes
,
C.
,
2019
, “
Numerical Study of the Flow Dynamics at No-Load Operation for a High Head Francis Turbine at Model Scale
,”
IOP Conf. Ser. Earth Environ. Sci.
,
240
(
2
), p.
022023
.10.1088/1755-1315/240/2/022023
48.
Morissette
,
J. F.
, and
Nicolle
,
J.
,
2019
, “
Fluid-Structure Simulations of the Stochastic Behaviour of a Medium Head Francis Turbine During Startup
,”
IOP Conf. Ser. Earth Environ. Sci.
,
240
(
2
), p.
022026
.10.1088/1755-1315/240/2/022026
49.
Menter
,
F. R.
,
Schütze
,
J.
, and
Gritskevich
,
M.
,
2012
, “
Global vs. Zonal Approaches in Hybrid RANS-LES Turbulence Modelling
,”
Progress in Hybrid RANS-LES Modelling
,
Springer
,
Berlin
, pp.
15
28
.
50.
Krappel
,
T.
,
Ruprecht
,
A.
,
Riedelbauch
,
S.
,
Jester-Zuerker
,
R.
, and
Jung
,
A.
,
2014
, “
Investigation of Francis Turbine Part Load Instabilities Using Flow Simulations With a Hybrid RANS-LES Turbulence Model
,”
IOP Conf. Ser. Earth Environ. Sci.
,
22
(
3
), p.
032001
.10.1088/1755-1315/22/3/032001
51.
Krappel
,
T.
,
Riedelbauch
,
S.
,
Jester-Zuerker
,
R.
,
Jung
,
A.
,
Flurl
,
B.
,
Unger
,
F.
, and
Galpin
,
P.
,
2016
, “
Turbulence Resolving Flow Simulations of a Francis Turbine in Part Load Using Highly Parallel CFD Simulations
,”
IOP Conf. Ser. Earth Environ. Sci.
,
49
(
6
), p.
062014
.10.1088/1755-1315/49/6/062014
You do not currently have access to this content.