Abstract

An in-depth understanding of stall behavior is essential to improve the safe and stable operation of the pump turbine. In this research, the detached eddy simulation (DES) is used to investigate the various characteristics and propagation mechanism of the rotating stall of the hump instability region. The frequency characteristics and spatial intensity distribution of the stall cells are studied by adopting the proper orthogonal decomposition (POD) method. The results indicate that the energy loss at 0.80QDES and 0.75QDES are induced by the rotating stall with three cells that occur in the diffuser flow channel, and the corresponding high amplitude frequencies are St0.0074 and St0.0111, respectively. The effect of the stall cells is particularly severe near the hub. When the flow rate is further reduced to 0.68QDES, the three rotating stall cells develop into two symmetrically distributed stable stall cells with no definite characteristic frequencies, and the blocking phenomenon is concentrated near the shroud. With the stall cells losing their rotational characteristics, they have less impact on the flow field and contribute less energy. This paper also reveals that the energy loss in the diffuser contributes significantly to the hump formation on the performance curve.

References

1.
Zhang
,
H.
,
Zhang
,
Y.
,
Ma
,
Q.
, and
Guo
,
D.
,
2022
, “
Development Trend of New Energy Industry Under the “Double Carbon” Target
,”
Energy Storage Sci. Technol.
,
11
(
5
), pp.
1677
1678
.https://esst.cip.com.cn/article/2022/2095-4239/2095-4239-2022-11-5-1677.shtml
2.
Peng
,
C.
,
2021
, “
Boost “Carbon Peaking, Carbon Neutralization” Target to Accelerate the Development of the Pumped Storage Power Station
,”
Hydropower Pumped Storage
,
7
(
6
), pp.
4
6
.10.3969/j.issn.2096-093X.2021.06.002
3.
Zhao
,
W.
,
Ma
,
D.
, and
Zeng
,
L.
,
2012
, “
Development Status and Prospect of Reversible Pump Turbines in Pumped Storage Power Stations
,”
J. Gansu Sci.
,
24
(
2
), pp.
101
103
.
4.
Zhang
,
T.
, and
Gao
,
Y.
,
2020
, “
Analysis on Energy Characteristics and Benefit Advantages of Pump Turbine of Variable Speed Pumped Storage Unit
,”
Hydropower Pumped Storage
,
6
(
4
), pp.
32
35
.
5.
Papaefthymiou
,
S. V.
,
Karamanou
,
E. G.
,
Papathanassiou
,
S. A.
, and
Papadopoulos
,
M. P.
,
2010
, “
A Wind-Hydro-Pumped Storage Station Leading to High RES Penetration in the Autonomous Island System of Ikaria
,”
IEEE Trans. Sustainable Energy
,
1
(
3
), pp.
163
172
.10.1109/TSTE.2010.2059053
6.
Bueno
,
C.
, and
Carta
,
J. A.
,
2005
, “
Technical–Economic Analysis of Wind-Powered Pumped Hydrostorage Systems. Part I: Model Development
,”
Sol. Energy
,
78
(
3
), pp.
382
395
.10.1016/j.solener.2004.08.006
7.
Xu
,
F.
,
Chen
,
L.
,
Jin
,
H.
, and
Liu
,
Z.
,
2013
, “
Modeling and Application Analysis of Joint Optimal Operation of Pumped Storage Power Stations and Wind Power
,”
Autom. Electric Power Syst.
,
37
(
1
), pp.
149
154
.10.7500/AEPS201209256
8.
Ma
,
S.
,
2018
, “
Establishment and Application of Wind-Photovoltaic-Pumped Storage Joint Optimization Operation Model
,”
Distrib. Utilization
,
35
(
1
), pp.
80
85
.10.19421/j.cnki.1006-6357.2018.01.014
9.
Gong
,
Y.
,
Tan
,
C.
,
Zhang
,
Y.
,
Yuan
,
Y.
,
Zhou
,
L.
,
Li
,
Y.
, and
Wang
,
J.
,
2018
, “
Peak Shaving Benefits Assessment of Renewable Energy Source Considering Joint Operation of Nuclear and Pumped Storage Station
,”
Energy Procedia
,
152
, pp.
953
958
.10.1016/j.egypro.2018.09.099
10.
Widmer
,
C.
,
Staubli
,
T.
, and
Ledergerber
,
N.
,
2011
, “
Unstable Characteristics and Rotating Stall in Turbine Brake Operation of Pump-Turbines
,”
ASME J. Fluids Eng.
,
133
(
4
), p.
041101
.10.1115/1.4003874
11.
Zhang
,
L.
,
He
,
R.
,
Wang
,
X.
,
Zhang
,
Q.
, and
Wang
,
S.
,
2019
, “
Study on Static and Dynamic Characteristics of an Axial Fan With Abnormal Blade Under Rotating Stall Conditions
,”
Energy
,
170
, pp.
305
325
.10.1016/j.energy.2018.12.125
12.
Zhao
,
X.
,
Xiao
,
Y.
,
Wang
,
Z.
,
Luo
,
Y.
, and
Cao
,
L.
,
2017
, “
Unsteady Flow and Pressure Pulsation Characteristics Analysis of Rotating Stall in Centrifugal Pumps Under Off-Design Conditions
,”
ASME J. Fluids Eng.
,
140
(
2
), p.
021105
.10.1115/1.4037973
13.
Sano
,
T.
,
Yoshida
,
Y.
,
Tsujimoto
,
Y.
,
Nakamura
,
Y.
, and
Matsushima
,
T.
,
2002
, “
Numerical Study of Rotating Stall in a Pump Vaned Diffuser
,”
ASME J. Fluids Eng.
,
124
(
2
), pp.
363
370
.10.1115/1.1459076
14.
Wu
,
Y.
,
Wu
,
J.
,
Zhang
,
G.
, and
Chu
,
W.
,
2014
, “
Experimental and Numerical Investigation of Flow Characteristics Near Casing in an Axial Flow Compressor Rotor at Stable and Stall Inception Conditions
,”
ASME J. Fluids Eng.
,
136
(
11
), p.
111106
.10.1115/1.4027178
15.
Gourdain
,
N.
,
Burguburu
,
S.
,
Leboeuf
,
F.
, and
Michon
,
G. J.
,
2010
, “
Simulation of Rotating Stall in a Whole Stage of an Axial Compressor
,”
Comput. Fluids
,
39
(
9
), pp.
1644
1655
.10.1016/j.compfluid.2010.05.017
16.
Fike
,
M.
,
Bombek
,
G.
,
Hriberšek
,
M.
, and
Hribernik
,
A.
,
2014
, “
Visualisation of Rotating Stall in an Axial Flow Fan
,”
Exp. Therm. Fluid Sci.
,
53
, pp.
269
276
.10.1016/j.expthermflusci.2013.12.020
17.
Botero
,
F.
,
Hasmatuchi
,
V.
,
Roth
,
S.
, and
Farhat
,
M.
,
2014
, “
Non-Intrusive Detection of Rotating Stall in Pump-Turbines
,”
Mech. Syst. Signal Process.
,
48
(
1–2
), pp.
162
173
.10.1016/j.ymssp.2014.03.007
18.
Liu
,
T.
,
Zhang
,
Y.
, and
Du
,
X.
,
2015
, “
A Review of Rotating Stall in Pump Turbine
,”
J. Hydroelectric Eng.
,
34
(
11
), pp.
16
24
.
19.
Zhang
,
C.
,
Xia
,
L.
,
Diao
,
W.
, and
Zhou
,
J.
,
2017
, “
Pressure Fluctuations Characteristics and Rotating Stall Propagation Mechanism of a Pump-Turbine in Pump Mode
,”
J. Hydraulic Eng.
,
48
(
07
), pp.
837
845
.10.13243/j.cnki.slxb.20170001
20.
Li
,
D.
,
Wang
,
H.
,
Xiang
,
G.
,
Gong
,
R.
,
Wei
,
X.
, and
Liu
,
Z.
,
2015
, “
Unsteady Simulation and Analysis for Hump Characteristics of a Pump Turbine Model
,”
Renewable Energy
,
77
, pp.
32
42
.10.1016/j.renene.2014.12.004
21.
Zuo
,
Z.
,
Liu
,
S.
,
Sun
,
Y.
, and
Wu
,
Y.
,
2015
, “
Pressure Fluctuations in the Vaneless Space of High-Head Pump-Turbines—A Review
,”
Renewable Sustainable Energy Rev.
,
41
(
Jan
), pp.
965
974
.10.1016/j.rser.2014.09.011
22.
Dazin
,
A.
,
Cavazzini
,
G.
,
Pavesi
,
G.
,
Dupont
,
P.
,
Coudert
,
S.
,
Ardizzon
,
G.
,
Caignaert
,
G.
, and
Bois
,
G.
,
2011
, “
High-Speed Stereoscopic PIV Study of Rotating Instabilities in a Radial Vaneless Diffuser
,”
Exp. Fluids
,
51
(
1
), pp.
83
93
.10.1007/s00348-010-1030-x
23.
Xue
,
P.
,
Liu
,
Z.
,
Lu
,
L.
,
Gao
,
Z.
, and
Meng
,
X.
,
2019
, “
Experimental Research on the Rotating Stall of a Pump Turbine in Pump Mode
,”
Water
,
11
(
11
), p.
2426
.10.3390/w11112426
24.
Yang
,
J.
,
Pavesi
,
G.
,
Yuan
,
S.
,
Cavazzini
,
G.
, and
Ardizzon
,
G.
,
2015
, “
Experimental Characterization of a Pump–Turbine in Pump Mode at Hump Instability Region
,”
ASME J. Fluids Eng.
,
137
(
5
), p.
051109
.10.1115/1.4029572
25.
Hasmatuchi
,
V.
,
Farhat
,
M.
,
Roth
,
S.
,
Botero
,
F.
, and
Avellan
,
F.
,
2011
, “
Experimental Evidence of Rotating Stall in a Pump-Turbine at Off-Design Conditions in Generating Mode
,”
ASME J. Fluids Eng.
,
133
(
5
), p.
051104
.10.1115/1.4004088
26.
Zhang
,
N.
,
Gao
,
B.
,
Ni
,
D.
, and
Liu
,
X.
,
2021
, “
Coherence Analysis to Detect Unsteady Rotating Stall Phenomenon Based on Pressure Pulsation Signals of a Centrifugal Pump
,”
Mech. Syst. Signal Process.
,
148
, p.
107161
.10.1016/j.ymssp.2020.107161
27.
Ye
,
W.
,
Ikuta
,
A.
,
Chen
,
Y.
,
Miyagawa
,
K.
, and
Luo
,
X.
,
2020
, “
Numerical Simulation on Role of the Rotating Stall on the Hump Characteristic in a Mixed Flow Pump Using Modified Partially Averaged Navier-Stokes Model
,”
Renewable Energy
,
166
, pp.
91
107
.10.1016/j.renene.2020.11.066
28.
Feng
,
J.
,
Ge
,
Z.
,
Yang
,
H.
,
Zhu
,
G.
,
Li
,
C.
, and
Luo
,
X.
,
2021
, “
Rotating Stall Characteristics in the Vaned Diffuser of a Centrifugal Pump
,”
Ocean Eng.
,
229
, p.
108955
.10.1016/j.oceaneng.2021.108955
29.
Pacot
,
O.
,
Kato
,
C.
,
Guo
,
Y.
,
Yamade
,
Y.
, and
Avellan
,
F.
,
2016
, “
Large Eddy Simulation of the Rotating Stall in a Pump-Turbine Operated in Pumping Mode at a Part-Load Condition
,”
ASME J. Fluids Eng.
,
138
(
11
), p.
111102
.10.1115/1.4033423
30.
Ješe
,
U.
, and
Fortes-Patella
,
R.
,
2016
, “
Unsteady Numerical Analysis of the Rotating Stall in Pump-Turbine Geometry
,”
Proc. IOP Conference Series Earth and Environmental Science
,
IOP Publishing
, Grenoble, France, p.
042005
.
31.
Ren
,
X.
,
Fan
,
H.
,
Xie
,
Z.
, and
Liu
,
B.
,
2019
, “
Stationary Stall Phenomenon and Pressure Fluctuation in a Centrifugal Pump at Partial Load Condition
,”
Heat Mass Transfer
,
55
(
8
), pp.
2277
2288
.10.1007/s00231-019-02579-0
32.
Yang
,
J.
,
Xie
,
T.
,
Giorgio
,
P.
,
Liu
,
X.
, and
Liu
,
J.
,
2018
, “
Numerical Study on Rotating Characteristics of Unsteady Flow Inner Pump-Turbine in Pump Mode
,”
Int. J. Fluid Mach. Syst.
,
11
(
3
), pp.
224
233
.10.5293/IJFMS.2018.11.3.224
33.
Yang
,
D.
,
Luo
,
X.
,
Liu
,
D.
,
Huang
,
R.
, and
Zhu
,
Z.
,
2019
, “
Unstable Flow Characteristics in a Pump-Turbine Simulated by a Modified Partially-Averaged Navier-Stokes Method
,”
Sci. China Technol. Sci.
,
62
(
3
), pp.
406
416
.10.1007/s11431-017-9259-3
34.
Erne
,
S.
,
Edinger
,
G.
, and
Bauer
,
C.
, 2015 “
Numerical Study of the Stay Vane Channel-Flow in a Reversible Pump Turbine at Off-Design Conditions
,”
Proceedings of the 16th International Conference on Fluid Flow Technologies
, Budapest, Hungary, pp.
1
4
.
35.
Rudolf
,
P.
, and
Štefan
,
D.
, 2012 “
Decomposition of the Swirling Flow Field Downstream of Francis Turbine Runner
,”
Proc. IOP Conference Series Earth and Environmental Science
,
IOP Publishing
, Tsinghua Univ, Beijing, China, p.
062008
.
36.
Witte
,
M.
,
Torner
,
B.
, and
Wurm
,
F.-H.
, “
Analysis of Unsteady Flow Structures in a Radial Turbomachine by Using Proper Orthogonal Decomposition
,”
ASME
Paper No. GT2018-76596.10.1115/GT2018-76596
37.
Zhang
,
R.
,
Chen
,
X.
, and
Luo
,
J.
,
2021
, “
Knowledge Mining of Low Specific Speed Centrifugal Pump Impeller Based on Proper Orthogonal Decomposition Method
,”
J. Therm. Sci.
,
30
(
3
), pp.
840
848
.10.1007/s11630-020-1356-5
38.
Liao
,
Z.
,
Yang
,
J.
,
Liu
,
X.
,
Hu
,
W.
, and
Deng
,
X.
,
2021
, “
Analysis of Unsteady Flow Structures in a Centrifugal Impeller Using Proper Orthogonal Decomposition
,”
J. Appl. Fluid Mech.
,
14
(
1
), pp.
89
101
.10.47176/JAFM.14.01.31299
39.
Cavazzini
,
G.
,
2013
,
Rotor-Stator Interaction in Radial Turbomachines Experimental and Numerical Investigation
,
LAP LAMBERT Academic Publishing
, Saarbrücken, Germany.
40.
Spalart
,
P. R.
,
2009
, “
Detached-Eddy Simulation
,”
Annu. Rev. Fluid Mech.
,
41
(
1
), pp.
181
202
.10.1146/annurev.fluid.010908.165130
41.
Pavesi
,
G.
,
Cavazzini
,
G.
, and
Ardizzon
,
G.
,
2016
, “
Numerical Analysis of the Transient Behaviour of a Variable Speed Pump-Turbine During a Pumping Power Reduction Scenario
,”
Energies
,
9
(
7
), p.
534
.10.3390/en9070534
42.
Sun
,
H.
,
Xiao
,
R.
,
Wang
,
F.
,
Xiao
,
Y.
, and
Liu
,
W.
,
2015
, “
Analysis of the Pump-Turbine S Characteristics Using the Detached Eddy Simulation Method
,”
Chin. J. Mech. Eng. English Ed.
,
28
(
1
), pp.
115
122
.10.3901/CJME.2014.1021.159
43.
Yi
,
J.
,
Liu
,
J.
,
Wang
,
L.
, and
Wei
,
X.
,
2011
, “
Prediction of Pressure Pulsation in Small Flow Area of the Pump Turbine in Pump Condition
,”
J. Eng. Thermophys.
,
32
(
7
), p.
4
.
44.
Li
,
Z.
,
Wang
,
Z.
,
Wei
,
X.
, and
Qin
,
D.
,
2016
, “
Flow Similarity in the Rotor–Stator Interaction Affected Region in Prototype and Model Francis Pump-Turbines in Generating Mode
,”
ASME J. Fluids Eng.
,
138
(
6
), p.
061201
.10.1115/1.4032298
45.
Li
,
W.
,
Ji
,
L.
,
Li
,
E.
,
Shi
,
W.
,
Agarwal
,
R.
, and
Zhou
,
L.
,
2021
, “
Numerical Investigation of Energy Loss Mechanism of Mixed-Flow Pump Under Stall Condition
,”
Renewable Energy
,
167
, pp.
740
760
.10.1016/j.renene.2020.11.146
46.
Li
,
W.
,
Li
,
E.
,
Ji
,
L.
,
Zhou
,
L.
,
Shi
,
W.
, and
Zhu
,
Y.
,
2020
, “
Mechanism and Propagation Characteristics of Rotating Stall in a Mixed-Flow Pump
,”
Renewable Energy
,
153
, pp.
74
92
.10.1016/j.renene.2020.02.003
47.
Zhang
,
F.
,
Yuan
,
S.
,
Wei
,
X.
, and
Chen
,
K.
,
2018
, “
Study on Flow Loss Characteristics of Side Channel Pump Based on Entropy Production
,”
J. Mech. Eng.
,
54
(
22
), pp.
137
144
.10.3901/JME.2018.22.137
48.
Zhang
,
Y.-X.
,
Hou
,
H.
,
Xu
,
C.
,
He
,
W.
, and
Li
,
Z.
,
2017
, “
Application of Entropy Production Method to Centrifugal Pump Energy Loss Evaluation
,”
J. Drain. Irrig. Mach. Eng.
,
4
, pp.
277
282
.10.1016/j.apenergy.2022.119211
49.
Li
,
D.
,
Gong
,
R.
,
Wang
,
H.
,
Xiang
,
G.
,
Wei
,
X.
, and
Qin
,
D.
,
2016
, “
Entropy Production Analysis for Hump Characteristics of a Pump Turbine Model
,”
Chin. J. Mech. Eng.
,
29
(
4
), pp.
803
812
.10.3901/CJME.2016.0414.052
50.
Yang
,
J.
,
2014
, “
Effect of Unsteady Flow of Centrifugal Pump With Guide Vane on the Hump of the Performance Curve
,”
Jiangsu University
, Jiangsu, China.
51.
Zhao
,
Y.
,
Qin
,
D.
,
Liu
,
W.
,
Xu
,
Y.
, and
Xu
,
J.
,
2012
, “
Comparison of Characteristic Parameters Characterizing the Degree of Pressure Pulsation Based on Random Uncertainty
,”
Large Electric Mach. Hydraulic Turbine
,
220
(
1
), pp.
34
37
.
You do not currently have access to this content.