Abstract

A compressible finite volume Navier–Stokes flow solver is coupled to a method of characteristics for the seamless turbulent flow simulation of entire pump systems. For the pump, three-dimensional (3D) simulations including cavitating flow conditions are performed, and the piping is treated one-dimensional (1D) by a method of characteristics. Thus, classical boundary conditions at the suction and pressure pipe of the 3D computational domain of the pump are substituted by a two-way coupled 1D piping simulation method. Particular emphasis has been placed on the non-reflecting properties of the 3D–1D coupling interface. For validation, in-house experiments are performed on a low specific speed centrifugal pump in a closed-loop facility. For cavitating flow conditions, excitation on the pump's pressure side by rotor–stator interaction is enhanced over a broad frequency spectrum due to collapsing voids. The suction side piping is shielded by void regions within the blading from the excitation on the pump's pressure side, leading to an acoustic decoupling of the suction side. These experimental observations are reproduced by the new seamless simulation method. In particular, the measured pressure amplitudes are well reproduced for a broad frequency spectrum, at several piping positions, and for a variation of the flow rate and the cavitation intensity. Remaining deviations to experimental data are traced back to the omission of structural compliance and uncertainties regarding the pressure side piping modeling, which will be addressed in future studies.

References

1.
Rzentkowski
,
G.
, and
Zbroja
,
S.
,
2000
, “
Experimental Characterization of Centrifugal Pumps as an Acoustic Source at the Blade-Passing Frequency
,”
J. Fluids Struct.
,
14
(
4
), pp.
529
558
.10.1006/jfls.1999.0280
2.
Zuo
,
Z.
,
Liu
,
S.
,
Sun
,
Y.
, and
Wu
,
Y.
,
2015
, “
Pressure Fluctuations in the Vaneless Space of High-Head Pump-Turbines—A Review
,”
Renewable Sustainable Energy Rev.
,
41
, pp.
965
974
.10.1016/j.rser.2014.09.011
3.
Guelich
,
J. F.
, and
Bolleter
,
U.
,
1992
, “
Pressure Pulsations in Centrifugal Pumps
,”
ASME J. Vib. Acoust.
,
114
(
2
), pp.
272
279
.10.1115/1.2930257
4.
Chu
,
S.
,
Dong
,
R.
, and
Katz
,
J.
,
1995
, “
Relationship Between Unsteady Flow, Pressure Fluctuations, and Noise in a Centrifugal Pump—Part B: Effects of Blade-Tongue Interactions
,”
ASME J. Fluids Eng.
,
117
(
1
), pp.
30
35
.10.1115/1.2816814
5.
Wang
,
C.
,
He
,
X.
,
Shi
,
W.
,
Wang
,
X.
,
Wang
,
X.
, and
Qiu
,
N.
,
2019
, “
Numerical Study on Pressure Fluctuation of a Multistage Centrifugal Pump Based on Whole Flow Field
,”
AIP Adv.
,
9
(
3
), p.
035118
.10.1063/1.5049196
6.
Guo
,
S.
, and
Maruta
,
Y.
,
2005
, “
Experimental Investigations on Pressure Fluctuations and Vibration of the Impeller in a Centrifugal Pump With Vaned Diffusers
,”
JSME Int. J., Ser. B
,
48
(
1
), pp.
136
143
.10.1299/jsmeb.48.136
7.
Barrio
,
R.
,
Parrondo
,
J.
, and
Blanco
,
E.
,
2010
, “
Numerical Analysis of the Unsteady Flow in the Near-Tongue Region in a Volute-Type Centrifugal Pump for Different Operating Points
,”
Comput. Fluids
,
39
(
5
), pp.
859
870
.10.1016/j.compfluid.2010.01.001
8.
Linkamp
,
A.
,
Lehr
,
C.
, and
Brümmer
,
A.
,
2017
, “
Pulsationen an Kavitierenden Kreiselpumpen Bei Schaufelpassierfrequenz
,”
Proceedings of the Tagungsband DAGA
, Kiel, Germany, Mar. 6–9, p.
995
.
9.
Morgenroth
,
M.
, and
Weaver
,
D. S.
,
1998
, “
Sound Generation by a Centrifugal Pump at Blade Passing Frequency
,”
ASME J. Turbomach.
,
120
(
4
), pp.
736
743
.10.1115/1.2841784
10.
Dong
,
R.
,
Chu
,
S.
, and
Katz
,
J.
,
1997
, “
Effect of Modification to Tongue and Impeller Geometry on Unsteady Flow, Pressure Fluctuations, and Noise in a Centrifugal Pump
,”
ASME J. Turbomach.
,
119
(
3
), pp.
506
515
.10.1115/1.2841152
11.
Parrondo-Gayo
,
J. L.
,
González-Pérez
,
J.
, and
Fernández-Francos
,
J.
,
2002
, “
The Effect of the Operating Point on the Pressure Fluctuations at the Blade Passage Frequency in the Volute of a Centrifugal Pump
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
784
790
.10.1115/1.1493814
12.
Barrio
,
R.
,
Blanco
,
E.
,
Parrondo
,
J.
,
González
,
J.
, and
Fernández
,
J.
,
2008
, “
The Effect of Impeller Cutback on the Fluid-Dynamic Pulsations and Load at the Blade-Passing Frequency in a Centrifugal Pump
,”
ASME J. Fluids Eng.
,
130
(
11
), p.
111102
.10.1115/1.2969273
13.
Furukawa
,
A.
,
Takahara
,
H.
,
Nakagawa
,
T.
, and
Ono
,
Y.
,
2003
, “
Pressure Fluctuation in a Vaned Diffuser Downstream From a Centrifugal Pump Impeller
,”
Int. J. Rotating Mach.
,
9
(
4
), pp.
285
292
.10.1155/S1023621X03000265
14.
Bai
,
L.
,
Zhou
,
L.
,
Chen
,
H.
,
Zhu
,
Y.
, and
Shi
,
W.
,
2019
, “
Numerical Study of Pressure Fluctuation and Unsteady Flow in a Centrifugal Pump
,”
Processes
,
7
(
6
), p.
354
.10.3390/pr7060354
15.
Solis
,
M.
,
Bakir
,
F.
,
Khelladi
,
S.
, and
Noguera
,
R.
,
2011
, “
Numerical Study on Pressure Fluctuations Reduction in Centrifugal Pumps: Influence of Radial Gap and Splitter Blades
,”
ISRN Mech. Eng.
,
2011
, pp.
1
14
.10.5402/2011/479594
16.
Longatte
,
F.
, and
Kueny
,
J.-L.
,
1999
, “
Analysis of Rotor-Stator-Circuit Interactions in a Centrifugal Pump
,”
Proceedings of the 3rd ASME/JSME Joint Fluids Engineering Conference
, San Francisco, CA, July 18–23, pp.
1039
1045
.
17.
Hayashi
,
I.
, and
Kaneko
,
S.
,
2014
, “
Pressure Pulsations in Piping System Excited by a Centrifugal Turbomachinery Taking the Damping Characteristics Into Consideration
,”
J. Fluids Struct.
,
45
, pp.
216
234
.10.1016/j.jfluidstructs.2013.11.012
18.
Barzdaitis
,
V.
,
Mažeika
,
P.
,
Vasylius
,
M.
,
Kartašovas
,
V.
, and
Tadzijevas
,
A.
,
2016
, “
Investigation of Pressure Pulsations in Centrifugal Pump System
,”
J. Vibroengineering
,
18
(
3
), pp.
1849
1860
.10.21595/jve.2016.15883
19.
Rzentkowski
,
G.
, and
Zbroja
,
S.
,
2000
, “
Acoustic Characterization of a CANDU Primary Heat Transport Pump at the Blade-Passing Frequency
,”
Nucl. Eng. Des.
,
196
(
1
), pp.
63
80
.10.1016/S0029-5493(99)00235-6
20.
Stirnemann
,
A.
,
Eberl
,
J.
,
Bolleter
,
U.
, and
Pace
,
S.
,
1987
, “
Experimental Determination of the Dynamic Transfer Matrix for a Pump
,”
ASME J. Fluids Eng.
,
109
(
3
), pp.
218
225
.10.1115/1.3242651
21.
Bardeleben
,
M.
, and
Weaver
,
D.
,
2002
, “
Estimation of the Acoustic Scattering Matrix for a Centrifugal Pump
,”
ASME
Paper No. IMECE2002-33354. 10.1115/IMECE2002-33354
22.
Keller
,
J.
,
Parrondo
,
J.
,
Barrio
,
R.
,
Fernández
,
J.
, and
Blanco
,
E.
,
2014
, “
Effects of the Pump-Circuit Acoustic Coupling on the Blade-Passing Frequency Perturbations
,”
Appl. Acoust.
,
76
, pp.
150
156
.10.1016/j.apacoust.2013.06.009
23.
Yasui
,
K.
,
2018
,
Acoustic Cavitation and Bubble Dynamics
,
Springer
, Cham, Switzerland.
24.
Yuning
,
Z.
,
Zhongyu
,
G.
,
Yuhang
,
G.
, and
Xiaoze
,
D.
,
2018
, “
Acoustic Wave Propagation in Bubbly Flow With Gas, Vapor or Their Mixtures
,”
Ultrason. Sonochem.
,
40
, pp.
40
45
.10.1016/j.ultsonch.2017.03.048
25.
Liao
,
M.
,
Si
,
Q.
,
Fan
,
M.
,
Wang
,
P.
,
Liu
,
Z.
,
Yuan
,
S.
,
Cui
,
Q.
, and
Bois
,
G.
,
2021
, “
Experimental Study on Flow Behavior of Unshrouded Impeller Centrifugal Pumps Under Inlet Air Entrainment Condition
,”
Int. J. Turbomach. Propul. Power
,
6
(
3
), p.
31
.10.3390/ijtpp6030031
26.
Tsujimoto
,
Y.
,
Yoshida
,
Y.
,
Maekawa
,
Y.
,
Watanabe
,
S.
, and
Hashimoto
,
T.
,
1997
, “
Observations of Oscillating Cavitation of an Inducer
,”
ASME J. Fluids Eng.
,
119
(
4
), pp.
775
781
.10.1115/1.2819497
27.
Ruchonnet
,
N.
,
Alligné
,
S.
,
Nicolet
,
C.
, and
Avellan
,
F.
,
2012
, “
Cavitation Influence on Hydroacoustic Resonance in Pipe
,”
J. Fluids Struct.
,
28
, pp.
180
193
.10.1016/j.jfluidstructs.2011.10.001
28.
Shi
,
W.
,
Wang
,
C.
,
Wang
,
W.
, and
Pei
,
B.
,
2014
, “
Numerical Calculation on Cavitation Pressure Pulsation in Centrifugal Pump
,”
Adv. Mech. Eng.
,
6
, p.
367631
.10.1155/2014/367631
29.
Luo
,
X.-W.
,
Ji
,
B.
, and
Tsujimoto
,
Y.
,
2016
, “
A Review of Cavitation in Hydraulic Machinery
,”
J. Hydrodyn.
,
28
(
3
), pp.
335
358
.10.1016/S1001-6058(16)60638-8
30.
Liu
,
X.
,
Hu
,
Q.
,
Wang
,
H.
,
Jiang
,
Q.
, and
Shi
,
G.
,
2018
, “
Characteristics of Unsteady Excitation Induced by Cavitation in Axial-Flow Oil–Gas Multiphase Pumps
,”
Adv. Mech. Eng.
,
10
(
4
), p.
168781401877126
.10.1177/1687814018771260
31.
Vardy
,
A. E.
, and
Hwang
,
K.-L.
,
1991
, “
A Characteristics Model of Transient Friction in Pipes
,”
J. Hydraul. Res.
,
29
(
5
), pp.
669
684
.10.1080/00221689109498983
32.
Linkamp
,
A.
, and
Brümmer
,
A.
,
2013
, “
Calculation of Discharge Pressure Pulsations of a Screw Compressor Using the One-Dimensional Method of Characteristics
,”
Proceedings of the 8th International Conference on Compressors and Their Systems
, London, UK, Sept. 9–10, pp.
197
207
.10.1533/9781782421702.4.197
33.
Linkamp
,
A.
,
Deimel
,
C.
,
Brümmer
,
A.
, and
Skoda
,
R.
,
2016
, “
First Application of a Coupled 3D-1D-1D Finite Volume–Finite Difference Method for the Numerical Simulation of Fluid Energy Machinery and Its Adjacent Piping System
,”
Proceedings of the 3rd International Rotating Equipment Conference–Pump Users International Forum
, Düsseldorf, Sept.
14
15
.
34.
Linkamp
,
A.
,
Lehr
,
C.
, and
Brümmer
,
A.
,
2017
, “
Simplified One-Dimensional Model for Transient Time-Domain Simulation of Centrifugal Pumps
,”
Proceedings of the 24th International Congress on Sound and Vibration
, London, UK, July
23
27
.https://www.researchgate.net/publication/318851076_SIMPLIFIED_ONEDIMENSIONAL_MODEL_FOR_TRANSIENT_TIMEDOMAIN_SIMULATION_OF_CENT RIFUGAL_PUMPS
35.
Lehr
,
C.
,
Linkamp
,
A.
,
Aurich
,
D.
, and
Brümmer
,
A.
,
2019
, “
Simulations and Experimental Investigations on the Acoustic Characterization of Centrifugal Pumps of Different Specific Speed
,”
Int. J. Turbomach. Propul. Power
,
4
(
3
), p.
16
.10.3390/ijtpp4030016
36.
Spence
,
R.
, and
Amaral-Teixeira
,
J.
,
2008
, “
Investigation Into Pressure Pulsations in a Centrifugal Pump Using Numerical Methods Supported by Industrial Tests
,”
Comput. Fluids
,
37
(
6
), pp.
690
704
.10.1016/j.compfluid.2007.10.001
37.
Wang
,
Y.
,
Luo
,
K.
,
Wang
,
K.
,
Liu
,
H.
,
Li
,
Y.
, and
He
,
X.
,
2017
, “
Research on Pressure Fluctuation Characteristics of a Centrifugal Pump With Guide Vane
,”
J. Vibroengineering
,
19
(
7
), pp.
5482
5497
.10.21595/jve.2017.18830
38.
Barrio
,
R.
,
Keller
,
J.
,
Fernández
,
J.
,
Blanco
,
E.
, and
Parrondo
,
J.
,
2015
, “
Prediction of Pump-Circuit Interactions by Computational Fluid Dynamics Calculations Coupled With a One-Dimensional Acoustic Model
,”
Proc. Inst. Mech. Eng., Part C
,
229
(
6
), pp.
1172
1181
.10.1177/0954406214542640
39.
Alligné
,
S.
,
Nicolet
,
C.
,
Allenbach
,
P.
,
Kawkabani
,
B.
,
Simond
,
J.-J.
, and
Avellan
,
F.
,
2009
, “
Influence of the Vortex Rope Location of a Francis Turbine on the Hydraulic System Stability
,”
Int. J. Fluid Mach. Syst.
,
2
(
4
), pp.
286
294
.10.5293/IJFMS.2009.2.4.286
40.
Alligné
,
S.
,
Nicolet
,
C.
, and
Avellan
,
F.
,
2011
, “
Identification of Francis Turbine Helical Vortex Rope Excitation by CFD and Resonance Simulation With the Hydraulic System
,”
ASME
Paper No. AJK2011-06089.10.1115/AJK2011-06089
41.
Zhang
,
X.-X.
, and
Cheng
,
Y.-G.
,
2012
, “
Simulation of Hydraulic Transients in Hydropower Systems Using the 1-d-3-d Coupling Approach
,”
J. Hydrodyn.
,
24
(
4
), pp.
595
604
.10.1016/S1001-6058(11)60282-5
42.
Zhang
,
X.-X.
,
Cheng
,
Y.-G.
,
Yang
,
J.-D.
,
Xia
,
L.-S.
, and
Lai
,
X.
,
2014
, “
Simulation of the Load Rejection Transient Process of a Francis Turbine by Using a 1-d-3-d Coupling Approach
,”
J. Hydrodyn.
,
26
(
5
), pp.
715
724
.10.1016/S1001-6058(14)60080-9
43.
Wu
,
D.
,
Yang
,
S.
,
Wu
,
P.
, and
Wang
,
L.
,
2015
, “
MOC-CFD Coupled Approach for the Analysis of the Fluid Dynamic Interaction Between Water Hammer and Pump
,”
J. Hydraul. Eng.
,
141
(
6
), p.
06015003
.10.1061/(ASCE)HY.1943-7900.0001008
44.
Yang
,
S.
,
Chen
,
X.
,
Wu
,
D.
, and
Yan
,
P.
,
2015
, “
Dynamic Analysis of the Pump System Based on MOC-CFD Coupled Method
,”
Ann. Nucl. Energy
,
78
, pp.
60
69
.10.1016/j.anucene.2014.12.022
45.
Yang
,
S.
,
Wu
,
D.
,
Wu
,
P.
, and
Wang
,
L.
,
2016
, “
Investigation on the Transient Characteristics of the Pump System Using MOC-CFD Coupled Method
,”
Proceedings of the 16th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
, Honolulu, HI, Apr.
10
15
.https://hal.science/hal-01887483/document
46.
Wang
,
C.
,
Nilsson
,
H.
,
Yang
,
J.
, and
Petit
,
O.
,
2017
, “
1d-3d Coupling for Hydraulic System Transient Simulations
,”
Comput. Phys. Commun.
,
210
, pp.
1
9
.10.1016/j.cpc.2016.09.007
47.
Yin
,
C.-C.
,
Zeng
,
W.
, and
Yang
,
J.-D.
,
2021
, “
Transient Simulation and Analysis of the Simultaneous Load Rejection Process in Pumped Storage Power Stations Using a 1-D-3-D Coupling Method
,”
J. Hydrodyn.
,
33
(
5
), pp.
979
991
.10.1007/s42241-021-0087-8
48.
Spille-Kohoff
,
A.
,
Hetze
,
F.
, and
Toit
,
B.
,
2019
, “
Transient CFD Co-Simulation of a 3D Compressor Model in Its 1D System Environment
,”
ASME
Paper No. GT2019-90426. 10.1115/GT2019-90426
49.
Blanco
,
P.
,
Feijóo
,
R.
, and
Urquiza
,
S.
,
2007
, “
A Unified Variational Approach for Coupling 3D-1D Models and Its Blood Flow Applications
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
41–44
), pp.
4391
4410
.10.1016/j.cma.2007.05.008
50.
Linkamp
,
A.
,
Deimel
,
C.
,
Brümmer
,
A.
, and
Skoda
,
R.
,
2016
, “
Non-Reflecting Coupling Method for One-Dimensional Finite Difference/Finite Volume Schemes Based on Spectral Error Analysis
,”
Comput. Fluids
,
140
, pp.
334
346
.10.1016/j.compfluid.2016.10.011
51.
Friedrich
,
M.
,
Munz
,
C.-D.
,
Skoda
,
R.
,
Iben
,
U.
, and
Kreschel
,
H.
,
2012,
3D-1D Coupling of Compressible Density-Based CFD Solvers for Cavitating Flows
,”
Proceedings of the 8th International Symposium on Cavitation
, Singapore, Aug. 13–16, pp.
556
562
.10.3850/978-981-07-2826-7_028
52.
Deininger
,
M.
,
Iben
,
U.
, and
Munz
,
C.-D.
,
2019
, “
Coupling of Three- and One-Dimensional Hydraulic Flow Simulations
,”
Comput. Fluids
,
190
, pp.
128
138
.10.1016/j.compfluid.2019.06.006
53.
Limbach
,
P.
, and
Skoda
,
R.
,
2017
, “
Numerical and Experimental Analysis of Cavitating Flow in a Low Specific Speed Centrifugal Pump With Different Surface Roughness
,”
ASME J. Fluids Eng.
,
139
(
10
), p.
101201
.10.1115/1.4036673
54.
Kiermeir
,
J.
,
Skoda
,
R.
, and
Schilling
,
R.
,
2016
, “
A Numerical Study of the Cavitating Flow in a Positive Displacement Pump
,”
Proceedings of the 3rd International Rotating Equipment Conference—Pump Users International Forum
, Düsseldorf, Germany, Sept. 14–15, pp.
205
216
.
55.
Kiermeir
,
J.
,
2015
, “
Numerische Simulation Einphasiger Sowie Kavitierender Strömungen in Oszillierenden Verdrängerpumpen
,” Ph.D. thesis,
Technische Universität München, Munich, Germany
.
56.
Patankar
,
S.
, and
Spalding
,
D.
,
1972
, “
A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows
,”
Int. J. Heat Mass Transfer
,
15
(
10
), pp.
1787
1806
.10.1016/0017-9310(72)90054-3
57.
Lilek
,
Ž.
,
Muzaferija
,
S.
,
Perić
,
M.
, and
Seidl
,
V.
,
1997
, “
An Implicit Finite Volume Method Using Nonmatching Blocks of Structured Grid
,”
Numer. Heat Transfer, Part B
,
32
(
4
), pp.
385
401
.10.1080/10407799708915015
58.
Lien
,
F. S.
, and
Leschziner
,
M. A.
,
1994
, “
A General Non-Orthogonal Collocated Finite Volume Algorithm for Turbulent Flow at All Speeds Incorporating Second-Moment Turbulence-Transport Closure, Part 1: Computational Implementation
,”
Comput. Methods Appl. Mech. Eng.
,
114
(
1–2
), pp.
123
148
.10.1016/0045-7825(94)90165-1
59.
van Leer
,
B.
,
1974
, “
Towards the Ultimate Conservative Difference Scheme. II. Monotonicity and Conservation Combined in a Second-Order Scheme
,”
J. Comput. Phys.
,
14
(
4
), pp.
361
370
.10.1016/0021-9991(74)90019-9
60.
Hirt
,
C. W.
,
Amsden
,
A. A.
, and
Cook, J.
L.
,
1997
, “
An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds
,”
J. Comput. Phys.
,
135
(
2
), pp.
203
216
.10.1006/jcph.1997.5702
61.
Beaudoin
,
M.
, and
Jasak
,
H.
,
2008
, “
Development of a Generalized Grid Interface for Turbomachinery Simulations With OpenFOAM
,”
Open Source CFD International Conference
, Berlin, Dec.
4
5
.
62.
Gabriel
,
E.
,
Fagg
,
G. E.
,
Bosilca
,
G.
,
Angskun
,
T.
,
Dongarra
,
J. J.
,
Squyres
,
J. M.
,
Sahay
,
V.
,
et al
.,
2004
, “
Open MPI: Goals, Concept, and Design of a Next Generation MPI Implementation
,”
Proceedings of 11th European PVM/MPI Users' Group Meeting
, Budapest, Hungary, Sept. 19–22, pp.
97
104
.10.1007/978-3-540-30218-6_19
63.
Dymond
,
J. H.
, and
Malhotra
,
R.
,
1988
, “
The Tait Equation: 100 Years On
,”
Int. J. Thermophys.
,
9
(
6
), pp.
941
951
.10.1007/BF01133262
64.
Chen
,
C.-T. A.
, and
Millero
,
F. J.
,
1986
, “
Thermodynamic Properties for Natural Waters Covering Only the Limnological Range1
,”
Limnol. Oceanogr.
,
31
(
3
), pp.
657
662
.10.4319/lo.1986.31.3.0657
65.
Melzer
,
S.
,
Munsch
,
P.
,
Förster
,
J.
,
Friderich
,
J.
, and
Skoda
,
R.
,
2020
, “
A System for Time-Fluctuating Flow Rate Measurements in a Single-Blade Pump Circuit
,”
Flow Meas. Instrum.
,
71
, p.
101675
.10.1016/j.flowmeasinst.2019.101675
66.
Schnerr
,
G. H.
, and
Sauer
,
J.
,
2001
, “
Physical and Numerical Modeling of Unsteady Cavitation Dynamics
,”
Proceedings of the 4th International Conference on Multiphase Flow
, New Orleans, LA, May 27–June 1.https://www.researchgate.net/publication/296196752_Physical_and_Numerical_Modeling_of_Unsteady_Cavitation_Dynamics
67.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
68.
Knopp
,
T.
,
2006
, “
Model-Consistent Universal Wall-Functions for RANS Turbulence Modelling
,”
Proceedings of the BAIL International Conference on Boundary and Interior Layers
, Göttingen, Germany, July
24
28
.
69.
Goncalves
,
E.
,
2011
, “
Numerical Study of Unsteady Turbulent Cavitating Flows
,”
Eur. J. Mech. B/Fluids
,
30
(
1
), pp.
26
40
.10.1016/j.euromechflu.2010.08.002
70.
Coutier-Delgosha
,
O.
,
Fortes Patella
,
R.
, and
Reboud
,
J.-L.
,
2003
, “
Evaluation of the Turbulence Model Influence on the Numerical Simulations of Unsteady Cavitation
,”
ASME J. Fluids Eng.
,
125
(
1
), pp.
38
45
.10.1115/1.1524584
71.
Sarkar
,
S.
,
Erlebacher
,
G.
,
Hussaini
,
M. Y.
, and
Kreiss
,
H. O.
,
1991
, “
The Analysis and Modelling of Dilatational Terms in Compressible Turbulence
,”
J. Fluid Mech.
,
227
, pp.
473
493
.10.1017/S0022112091000204
72.
Zeman
,
O.
,
1990
, “
Dilatation Dissipation: The Concept and Application in Modeling Compressible Mixing Layers
,”
Phys. Fluids A
,
2
(
2
), pp.
178
188
.10.1063/1.857767
73.
Brunon
,
B.
,
Golia
,
U. M.
, and
Greco
,
M.
,
1991
, “
Some Remarks on the Momentum Equation for Fast Transients
,”
Proceedings of the International Meeting on Hydraulic Transients With Column Separation, 9th Round Table
, Valencia, Spain, Sept. 4–6, pp.
140
148
.
74.
Herwig
,
H.
,
Gloss
,
D.
, and
Wenterodt
,
T.
,
2008
, “
A New Approach to Understanding and Modelling the Influence of Wall Roughness on Friction Factors for Pipe and Channel Flows
,”
J. Fluid Mech.
,
613
, pp.
35
53
.10.1017/S0022112008003534
75.
Vardy
,
A. E.
, and
Brown
,
J.
,
2003
, “
Transient Turbulent Friction in Smooth Pipe Flows
,”
J. Sound Vib.
,
259
(
5
), pp.
1011
1036
.10.1006/jsvi.2002.5160
76.
Linkamp
,
A.
, and
Brümmer
,
A.
,
2016
, “
One-Dimensional Nonreflective Boundary and Coupling Condition for Transient Simulation of Fluid-Energy-Machinery and Piping Systems
,”
Proceedings of the 23rd International Congress on Sound and Vibration
, Athens, Greece, July
10
14
.https://www.researchgate.net/publication/306066234_Onedimensional_nonreflective_boundary_and_coupling_condition_for_transient_simulation_of_fluid-energy-machinery_and_piping_systems
77.
Limbach
,
P.
,
Kimoto
,
M.
,
Deimel
,
C.
, and
Skoda
,
R.
,
2014
, “
Numerical 3D Simulation of the Cavitating Flow in a Centrifugal Pump With Low Specific Speed and Evaluation of the Suction Head
,”
ASME
Paper No. GT2014-26089. 10.1115/GT2014-26089
78.
Limbach
,
P.
,
Müller
,
T.
, and
Skoda
,
R.
,
2015
, “
Application of a Compressible Flow Solver and Barotropic Cavitation Model for the Evaluation of the Suction Head in a Low Specific Speed Centrifugal Pump Impeller Channel
,”
J. Phys.: Conf. Ser.
,
656
, p.
012065
.10.1088/1742-6596/656/1/012065
79.
Adams
,
T.
,
Grant
,
C.
, and
Watson
,
H.
,
2012
, “
A Simple Algorithm to Relate Measured Surface Roughness to Equivalent Sand-Grain Roughness
,”
Int. J. Mech. Eng. Mechatron.
,
1
(
1
), pp.
66
71
.10.11159/ijmem.2012.008
80.
Juckelandt
,
K.
, and
Wurm
,
F.-H.
,
2015
, “
Applicability of Wall-Function Approach in Simulations of Turbomachines
,”
ASME
Paper No. GT2015-42014.10.1115/GT2015-42014
81.
Limbach
,
P.
,
Skoda
,
R.
,
Groß
,
T. F.
,
Ludwig
,
G.
, and
Pelz
,
P. F.
,
2018
, “
Numerical 3D Simulation of the NPSH Characteristics of Centrifugal Pumps With Local and Integral Analysis of Void Structures
,”
Proceedings of the 10th International Symposium on Cavitation
, Baltimore, MD, May
14
16
.10.1115/1.861851_ch142
82.
Prabhu
,
K. M. M.
,
2014
,
Window Functions and Their Applications in Signal Processing
,
Taylor & Francis
, Boca Raton, FL.
83.
Jia
,
X.
,
Chu
,
Q.
,
Zhang
,
L.
, and
Zhu
,
Z.
,
2022
, “
Experimental Study on Operational Stability of Centrifugal Pumps of Varying Impeller Types Based on External Characteristic, Pressure Pulsation and Vibration Characteristic Tests
,”
Front. Energy Res.
, 10, p.
866037
.10.3389/fenrg.2022.866037
84.
Cao
,
H.
,
Nistor
,
I.
, and
Mohareb
,
M.
,
2020
, “
Effect of Boundary on Water Hammer Wave Attenuation and Shape
,”
J. Hydraul. Eng.
,
146
(
3
), p.
04020001
.10.1061/(ASCE)HY.1943-7900.0001701
85.
Gülich
,
J. F.
,
2010
,
Centrifugal Pumps
,
Springer
,
Berlin, Germany
.
86.
Testud
,
P.
,
Moussou
,
P.
,
Hirschberg
,
A.
, and
Aurégan
,
Y.
,
2007
, “
Noise Generated by Cavitating Single-Hole and Multi-Hole Orifices in a Water Pipe
,”
J. Fluids Struct.
,
23
(
2
), pp.
163
189
.10.1016/j.jfluidstructs.2006.08.010
You do not currently have access to this content.