Abstract

Even with its small size, the Gurney flap (GF) can help considerably in increasing the lift of foils and wings. To exploit this feature, the objective of this research was to numerically study the effects of this flow control device on the aerodynamic performance of oscillating foils for micro-aerial vehicle (MAV) applications. Three sets of each important parameter were selected: the height (0.01c, 0.04c, and 0.16c), angle (45 deg, 90 deg, and 135 deg) and location from trailing edge (T.E, 0.05c and 0.1c). A two-dimensional laminar, incompressible Navier–Stokes equation solver was used to computationally investigate the effect of the Gurney flap on the aerodynamic performance of a flat plate (chord length = 10 mm and thickness = 0.03c). It was found that the best aerodynamic performance was obtained when the Gurney flap was installed at the trailing edge with a height of 0.04c and mount angle of 90 deg. The height of the Gurney flap had a major impact on aerodynamic performance. Results showed an increase of 23.5% in mean lift coefficient, 15.5% in maximum lift coefficient, and 5% in power economy as compared to flat plate, which is accredited to the increase in effective camber and the formation of counter-rotating vortices, decreasing the adverse pressure gradient. The weakening of counter-rotating vortices downstream of Gurney flap could also be the contributing factor to its good performance. The results suggest that the Gurney flap may be useful in enhancing the performance of wings for bio-inspired flapping wing MAVs.

References

1.
Ellington
,
C. P.
,
van den Berg
,
C.
,
Willmott
,
A. P.
, and
Thomas
,
A. L. R.
,
1996
, “
Leading Edge Vorticies in Insect Flight
,”
Nature
,
384
(
6610
), pp.
626
630
.10.1038/384626a0
2.
Srygley
,
R. B.
, and
Thomas
,
A. L. R.
,
2002
, “
Unconventional Lift-Generating Mechanisms in Free-Flying Butterflies
,”
Nature
,
420
(
6916
), pp.
660
664
.10.1038/nature01223
3.
Naderi
,
A.
,
Mojtahedpoor
,
M.
,
Beiki
,
A.
, and
Space Research Institute
,
2016
, “
Numerical Investigation of Non-Stationary Parameters on Effective Phenomena of a Pitching Airfoil at Low Reynolds Number
,”
J. Appl. Fluid Mech.
,
9
(
2
), pp.
643
651
.10.18869/ACADPUB.JAFM.68.225.24407
4.
Andro
,
J. Y.
, and
Jacquin
,
L.
,
2009
, “
Frequency Effects on the Aerodynamic Mechanisms of a Heaving Airfoil in a Forward Flight Configuration
,”
Aerosp. Sci. Technol.
,
13
(
1
), pp.
71
80
.10.1016/j.ast.2008.05.001
5.
Azuma
,
A.
,
1992
,
The Biokinetics of Flying and Swimming
,
Springer
,
Japan, Tokyo
.
6.
Serdar Genç
,
M.
,
Koca
,
K.
,
Demir
,
H.
, and
Hakan Açıkel
,
H.
,
2020
, “
Traditional and New Types of Passive Flow Control Techniques to Pave the Way for High Maneuverability and Low Structural Weight for UAVs and MAVs
,”
Auton. Veh.
, epub, pp.
57
67
.10.5772/intechopen.90552
7.
Kelly
,
J. M.
,
Khalid
,
M. S. U.
,
Han
,
P.
, and
Dong
,
H.
,
2023
, “
Geometric Characteristics of Flapping Foils for Enhanced Propulsive Efficiency
,”
ASME J. Fluids Eng.
,
145
(
6
), p.
061104
.10.1115/1.4057018
8.
Liebeck
,
R. H.
,
1978
, “
Design of Subsonic Airfoils for High Lift
,”
J. Aircr.
,
15
(
9
), pp.
547
561
.10.2514/3.58406
9.
Wang
,
J. J.
,
Li
,
Y. C.
, and
Choi
,
K. S.
,
2008
, “
Gurney Flap-Lift Enhancement, Mechanisms and Applications
,”
Prog. Aerosp. Sci.
,
44
(
1
), pp.
22
47
.10.1016/j.paerosci.2007.10.001
10.
Greenblatt
,
D.
,
2011
, “
Application of Large Gurney Flaps on Low Reynolds Number Fan Blades
,”
ASME J. Fluids Eng.
,
133
(
2
), p.
021102
.10.1115/1.4003301
11.
Joo
,
W.
,
Lee
,
B. S.
,
Yee
,
K.
, and
Lee
,
D. H.
,
2006
, “
Combining Passive Control Method for Dynamic Stall Control
,”
J. Aircr.
,
43
(
4
), pp.
1120
1128
.10.2514/1.17957
12.
Li
,
Y. C.
,
Wang
,
J. J.
, and
Hua
,
J.
,
2007
, “
Experimental Investigations on the Effects of Divergent Trailing Edge and Gurney Flaps on a Supercritical Airfoil
,”
Aerosp. Sci. Technol.
,
11
(
2–3
), pp.
91
99
.10.1016/j.ast.2006.01.006
13.
Traub
,
L. W.
, and
Galls
,
S. F.
,
1999
, “
Effects of Leading- and Trailing-Edge Gurney Flaps on a Delta Wing
,”
J. Aircr.
,
36
(
4
), pp.
651
658
.10.2514/2.2507
14.
Zhan
,
J. X.
, and
Wang
,
J. J.
,
2004
, “
Experimental Study on Gurney Flap and Apex Flap on a Delta Wing
,”
J. Aircr.
,
41
(
6
), pp.
1379
1383
.10.2514/1.4044
15.
Genest
,
B.
, and
Dumas
,
G.
,
2023
, “
Numerical Investigation Into Single and Double Gurney Flaps for Improving Airfoil Performance
,”
J. Aircr.
, epub, pp.
1
15
.10.2514/1.C037304
16.
Traub
,
L. W.
,
2019
, “
Effects of Plain and Gurney Flaps on a Nonslender Delta Wing
,”
J. Aircr.
,
56
(
2
), pp.
469
480
.10.2514/1.C034929
17.
He
,
X.
,
Wang
,
J. J.
,
Yang
,
M. Q.
,
Ma
,
D. L.
,
Yan
,
C.
, and
Liu
,
P. Q.
,
2017
, “
Numerical Simulation of Gurney Flaps Lift-Enhancement on a Low Reynolds Number Airfoil
,”
Sci. China Technol. Sci.
,
60
(
10
), pp.
1548
1559
.10.1007/s11431-017-9085-4
18.
Feng
,
L. H.
,
Choi
,
K. S.
, and
Wang
,
J. J.
,
2015
, “
Flow Control Over an Airfoil Using Virtual Gurney Flaps
,”
J. Fluid Mech.
,
767
, pp.
595
626
.10.1017/jfm.2015.22
19.
Cole
,
J. A.
,
Vieira
,
B. A. O.
,
Coder
,
J. G.
,
Premi
,
A.
, and
Maughmer
,
M. D.
,
2013
, “
Experimental Investigation Into the Effect of Gurney Flaps on Various Airfoils
,”
J. Aircr.
,
50
(
4
), pp.
1287
1294
.10.2514/1.C032203
20.
Maughmer
,
M. D.
, and
Bramesfeld
,
G.
,
2008
, “
Experimental Investigation of Gurney Flaps
,”
J. Aircr.
,
45
(
6
), pp.
2062
2067
.10.2514/1.37050
21.
Neuhart
,
D. H.
, and
Pendergraft
,
I. C.
,
1988
, Water Tunnel Study of Gurney Flaps, NASA Technical Memorandum, Report No. 4071.
22.
Li
,
Y.
,
Wang
,
J.
, and
Zhang
,
P.
,
2003
, “
Influences of Mounting Angles and Locations on the Effects of Gurney Flaps
,”
J. Aircr.
,
40
(
3
), pp.
494
498
.10.2514/2.3144
23.
Albertani
,
R.
,
2008
, “
Wind-Tunnel Study of Gurney Flaps Applied to Micro Aerial Vehicle Wing
,”
AIAA J.
,
46
(
6
), pp.
1560
1562
.10.2514/1.35110
24.
Jeffrey
,
D.
,
Zhang
,
X.
, and
Hurst
,
D. W.
,
2001
, “
Some Aspects of the Aerodynamics of Gurney Flaps on a Double-Element Wing
,”
ASME J. Fluids Eng.
,
123
(
1
), pp.
99
104
.10.1115/1.1334376
25.
Cravero
,
C.
,
2017
, “
Aerodynamic Performance Prediction of a Profile in Ground Effect With and Without a Gurney Flap
,”
ASME J. Fluids Eng.
,
139
(
3
), p.
031105
.10.1115/1.4035137
26.
Naderi
,
A.
,
Beiki
,
A.
, and
Tarvirdizadeh
,
B.
,
2019
, “
Numerical Investigation of Gurney Flap Influences on Aerodynamic Performance of a Pitching Airfoil in Low Reynolds Number Flow
,”
Proc. Inst. Mech. Eng., Part G
,
233
(
10
), pp.
3819
3832
.10.1177/0954410018808708
27.
Ajalli
,
F.
,
Gharakhanlou
,
M.
,
Mani
,
M.
, and
Daraeizadeh
,
S.
,
2012
, “
An Investigation of Gurney Flap Effects on the Wake of an Airfoil in Plunging Motion
,”
ASME
Paper No. IMECE2012-85625. 10.1115/IMECE2012-85625
28.
Li
,
Y.
,
Zhang
,
N.
, and
Pan
,
Z.
,
2021
, “
Propulsive Performance of a Newly Conceptual Design of Flapping Foil With Fixed Gurney Plate- A Numerical Study
,”
Ocean Eng.
,
239
(
September
), p.
109800
.10.1016/j.oceaneng.2021.109800
29.
Gerontakos
,
P.
, and
Lee
,
T.
,
2008
, “
Particle Image Velocimetry Investigation of Flow Over Unsteady Airfoil With Trailing-Edge Strip
,”
Exp. Fluids
,
44
(
4
), pp.
539
556
.10.1007/s00348-007-0414-z
30.
Gerontakos
,
P.
, and
Lee
,
T.
,
2006
, “
Oscillating Wing Loadings With Trailing-Edge Strips
,”
J. Aircr.
,
43
(
2
), pp.
428
436
.10.2514/1.15616
31.
Xie
,
Y. H.
,
Jiang
,
W.
,
Lu
,
K.
, and
Zhang
,
D.
,
2016
, “
Numerical Investigation Into Energy Extraction of Flapping Airfoil With Gurney Flaps
,”
Energy
,
109
, pp.
694
702
.10.1016/j.energy.2016.05.039
32.
Zhu
,
B.
,
Huang
,
Y.
, and
Zhang
,
Y.
,
2018
, “
Energy Harvesting Properties of a Flapping Wing With an Adaptive Gurney Flap
,”
Energy
,
152
, pp.
119
128
.10.1016/j.energy.2018.03.142
33.
Sun
,
G.
,
Wang
,
Y.
,
Xie
,
Y.
,
Lv
,
K.
, and
Sheng
,
R.
,
2021
, “
Research on the Effect of a Movable Gurney Flap on Energy Extraction of Oscillating Hydrofoil
,”
Energy
,
225
, p.
120206
.10.1016/j.energy.2021.120206
34.
Ellington
,
C. P.
,
1984
, “
The Aerodynamics of Hovering Insect Flight. I. The Quasi-Steady Analysis
,”
Philos. Trans. R. Soc. London, Ser. B
,
305
(
1122
), pp.
1
15
.10.1098/rstb.1984.0049
35.
Shah
,
M.
,
Battaglia
,
F.
, and
Bayandor
,
J.
,
2023
, “
The Importance of Morphology in Further Unraveling the Bumblebee Flight Paradox
,”
ASME J. Fluids Eng.
,
145
(
1
), p.
011303
.10.1115/1.4055548
36.
Wang
,
Z. J.
,
2000
, “
Two Dimensional Mechanism for Insect Hovering
,”
Phys. Rev. Lett.
,
85
(
10
), pp.
2216
2219
.10.1103/PhysRevLett.85.2216
37.
Lee
,
Y. J.
, and
Lua
,
K. B.
,
2018
, “
Wing–Wake Interaction: Comparison of 2D and 3D Flapping Wings in Hover Flight
,”
Bioinspiration Biomimetics
,
13
(
6
), p.
066003
.10.1088/1748-3190/aadc31
38.
Park
,
J.-Y.
,
2018
,
Numerical and Experimental Study of Flapping Foils With Dynamic Wall Effect
,
University of Rhode Island
, Kingston, RI.
39.
Yang
,
J.
,
Yang
,
H.
,
Zhu
,
W.
,
Li
,
N.
, and
Yuan
,
Y.
,
2020
, “
Experimental Study on Aerodynamic Characteristics of a Gurney Flap on a Wind Turbine Airfoil Under High Turbulent Flow Condition
,”
Appl. Sci.
,
10
(
20
), p.
7258
.10.3390/app10207258
You do not currently have access to this content.