Abstract

The trend to conduct volumetric particle tracking velocimetry (PTV) experiments with ever-increasing volumes, at a given particle density, poses increasing challenges on the design of such experiments in terms of the power of the laser source and the image analysis. These challenges, on one hand, require a reliable model to estimate the current signal from a pixel on a complementary metal-oxide semiconductor (CMOS) detector due to a Mie scattering particle. On the other hand, they require also a model for estimating the limiting factors upon the image resolution, where a large amount of particles within a three-dimensional (3D) volume are mapped into a two-dimensional (2D) image. Herein, we present a model that provides an analytical expression to estimate the current signal from a pixel of a CMOS detector due to a Mie scattering particle within an arbitrary large volume in a volumetric PTV experiments. We begin with a model for planar experiments and extend it into volumetric measurements. Our model considers the effect of the depth of field, particle density, Mie scattering signal and total Mie scattering loss, laser pulse energy, and other relevant optical parameters. Later, we investigate the consequence of the Rayleigh criterion upon the spatial resolution when it is applied to Mie particles within a volume of interest (VOI). Finally, we demonstrate how we applied our model to estimate the current signal and the limit upon the spatial resolution in three experiments carried out in our lab.

References

1.
Schanz
,
D.
,
Gesemann
,
S.
, and
Schröder
,
A.
,
2016
, “
Shake-The-Box: Lagrangian Particle Tracking at High Particle Image Densities
,”
Exp. Fluids
,
57
(
5
), pp.
1
27
.10.1007/s00348-016-2157-1
2.
Booysen
,
A.
,
Das
,
P.
, and
Ghaemi
,
S.
,
2022
, “
Large-Scale 3D-PTV Measurement of Ahmed-Body Wake in Crossflow
,”
Exp. Therm. Fluid Sci.
,
132
(
110562
), p.
110562
.10.1016/j.expthermflusci.2021.110562
3.
Scarano
,
F.
,
Ghaemi
,
S.
,
Carlo
,
G.
,
Caridi
,
A.
,
Bosbach
,
J.
,
Dierksheide
,
U.
, and
Sciacchitano
,
A.
,
2015
, “
On the Use of Helium-Filled Soap Bubbles for Large-Scale Tomographic PIV in Wind Tunnel Experiments
,”
Exp. Fluids
,
56
(
2
), pp.
1
12
.10.1007/s00348-015-1909-7
4.
Huhn
,
F.
,
Schanz
,
D.
,
Manovski
,
P.
,
Gesemann
,
S.
, and
Schröder
,
A.
,
2018
, “
Time-Resolved Large-Scale Volumetric Pressure Fields of an Impinging Jet From Dense Lagrangian Particle Tracking
,”
Exp. Fluids
,
59
(
5
), pp.
1
16
.10.1007/s00348-018-2533-0
5.
Ribergaard
,
S. L.
,
Zhang
,
Y.
,
Abitan
,
H.
,
Nielsen
,
J. S.
,
Jensen
,
N. S.
, and
Velte
,
C. M.
,
2021
, “
A Novel Laboratory Pushing the Limits for Optics-Based Basic Turbulence Investigations
,”
14th International Symposium on Particle Image Velocimetry - PIV21
, Chicago, IL, Aug. 1–4.https://ispiv21.library.iit.edu/index.php/ISPIV/article/view/137/141
6.
Zhang
,
Y.
,
Abitan
,
H.
,
Ribergaard
,
S. L.
, and
Velte
,
C. M.
,
2021
, “
A Novel Volumetric Velocity Measurement Method for Small Seeding Tracers in Large Volumes
,”
14th International Symposium on Particle Image Velocimetry - PIV21
, Chicago, IL, Aug. 1–4.https://ispiv21.library.iit.edu/index.php/ISPIV/article/view/192/195
7.
Raffel
,
M.
,
Willert
,
C. E.
,
Scarano
,
F.
,
Kähler
,
C. J.
,
Wereley
,
S. T.
, and
Kompenhans
,
J.
,
2018
,
Particle Image Velocimetry – A Practical Guide
, 3rd ed.,
Springer
,
New York
.
8.
Hawkes
,
J.
, and
Latimer
,
I.
,
1995
,
Lasers Theory and Practice
,
Prentice Hall
,
Europe, Hempel Hempstead, GB
.
9.
Michael Bass
,
D. R. W. W. L. W.
, and
VanStryland
,
E. W.
,
1995
,
Handbook of Optics, Fundamental, Techniques, & Design
, Vol.
I
,
McGraw-Hill, Inc
.,
New York
.
10.
Loudon
,
R.
,
1983
,
The Quantum Theory of Light
, 3rd ed.,
Oxford University Press
,
Oxford, GB
.
11.
Oedrotti
,
F. L.
, and
Pedrotti
,
S. L. L. S.
,
1993
,
Introduction to Optics
,
Prentice Hall
,
Europe, Hempel Hempstead, GB
.
12.
Clifford
,
C.
,
Tan
,
Z. P.
,
Hall
,
E.
, and
Thurow
,
B.
,
2019
, “
Particle Matching and Triangulation Using Light-Field Ray Bundling
,”
13th International Symposium on Particle Image Velocimetry – ISPIV 2019
, Munich, Germany, July 22–24.https://atheneforschung.unibw.de/doc/128878/128878.pdf
13.
Hartz
,
B.
, and
Meyer
,
K.
,
2023
, “
Concentration Measurements in the Near-Field of a Transient Jet Using Planar Mie Scattering
,”
Proceedings of the 15th International Symposium on Particle Image Velocimetry – ISPIV 2023
, San Diego, CA, June 19–21.https://backend.orbit.dtu.dk/ws/portalfiles/portal/331188227/Contribution_201_final.pdf
14.
Velte
,
C.
,
Hodzic
,
A.
,
Abitan
,
H.
,
Olesen
,
P.
,
Schiødt
,
M.
,
Ribergaard
,
S.
, and
Zhang
,
Y.
,
2023
, “
A Laboratory & Theoretical Framework for Systematic Non-Equilibrium Turbulence Studies
,”
Progress in Turbulence X: Proceedings of the iTi Conference on Turbulence 2023
, Bertinoro, Italy, May 24–26.https://orbit.dtu.dk/en/publications/a-laboratory-amp-theoretical-framework-for-systematic-non-equilib
You do not currently have access to this content.