Abstract

Traditionally fluidic oscillators are designed to be planar. However, there are applications that may desire the exiting fluid to move in the third dimension. This could allow these oscillators to be more effective in applications such as fuel sprays, cooling flow, or flow control devices with its increase in effective spray area. This investigation designed a series of oscillators that curved the whole body and/or the exit nozzle to understand how to maximize out of plane motion. These configurations were compared to a baseline planar oscillator with no curved characteristics. Velocities were measured downstream of these oscillators within a data collection grid using a hot wire probe to determine the 3D shape of the exiting jet. Results show that configurations with only one of the two curved physical characteristics (i.e., only a curved body or a curved nozzle) produced the most curvature. Having both of the curved physical characteristics caused the nozzle width to decrease causing the axial spacing to decrease. Additionally, these curved exiting flows were only seen at mass flow rates below 40 standard liters per minute (SLPM). Higher mass flow rates caused the exiting flow to flatten, returning the flow to the baseline result of in-plane oscillations. This led to a decrease in jet spread.

References

1.
Bohan
,
B. T.
, and
Polanka
,
M. D.
,
2020
, “
The Effect of Scale and Working Fluid on Sweeping Jet Frequency and Oscillation Angle
,”
ASME J. Fluids Eng.
,
142
(
6
), p.
061206
.10.1115/1.4046167
2.
Baghaei
,
M.
, and
Bergada
,
J. M.
,
2020
, “
Fluidic Oscillators, the Effect of Some Design Modifications
,”
Appl. Sci.
,
10
(
6
), p.
2105
.10.3390/app10062105
3.
Woszidlo
,
R.
,
Ostermann
,
F.
, and
Schmidt
,
H.
,
2019
, “
Fundamental Properties of Fluidic Oscillators for Flow Control Applications
,”
AIAA J.
,
57
(
3
), pp.
978
992
.10.2514/1.J056775
4.
Lee
,
S.
,
Roh
,
T.-S.
, and
Lee
,
H. J.
,
2023
, “
Influence of Jet Parameters of Fluidic Oscillator-Type Fuel Injector on the Mixing Performance in a Supersonic Flow Field
,”
Aerosp. Sci. Technol.
,
134
, p.
108154
.10.1016/j.ast.2023.108154
5.
Ten
,
J. S.
, and
Povey
,
T.
,
2019
, “
Self-Excited Fluidic Oscillators for Gas Turbines Cooling Enhancement: Experimental and Computational Study
,”
J. Thermophys. Heat Transfer
,
33
(
2
), pp.
536
547
.10.2514/1.T5261
6.
Abdelmaksoud
,
R.
, and
Wang
,
T.
,
2023
, “
Recent Advances in Heat Transfer Applications Using Sweeping Jet Fluidic Oscillators
,”
Int. J. Energy Clean Environ.
,
24
(
2
), pp.
27
81
.10.1615/InterJEnerCleanEnv.2022041464
7.
Sieber
,
M.
,
Ostermann
,
F.
,
Woszidlo
,
R.
,
Oberleithner
,
K.
, and
Paschereit
,
C. O.
,
2016
, “
Lagrangian Coherent Structures in the Flow Field of a Fluidic Oscillator
,”
Phys. Rev. Fluids
,
1
(
5
), p.
050509
.10.1103/PhysRevFluids.1.050509
8.
Stouffer
,
R.
, and
Bower
,
R.
,
1998
, “
Fluidic Flow Meter With Fiber Optic Sensor
,” U.S. Patent No. 5,827,976.
9.
Woszidlo
,
R.
,
Ostermann
,
F.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2015
, “
The Time Resolved Natural Flow Field of a Fluidic Oscillator
,”
Exp. Fluids
,
56
(
6
), p.
12
.10.1007/s00348-015-1993-8
10.
Seele
,
R.
,
Tewes
,
P.
,
Woszidlo
,
R.
,
McVeigh
,
M. A.
,
Lucas
,
N.
, and
Wygnanski
,
I.
,
2009
, “
Discrete Sweeping Jets as Tools for Improving the Performance of the V-22
,”
J. Aircr.
,
46
(
6
), pp.
2098
2106
.10.2514/1.43663
11.
Kara
,
K.
,
Kim
,
D.
, and
Morris
,
P. J.
,
2018
, “
Flow Separation Control Using Sweeping Jet Actuator
,”
AIAA J.
,
56
(
11
), pp.
4604
4613
.10.2514/1.J056715
12.
Koklu
,
M.
, and
Owens
,
L.
,
2017
, “
Comparison of Sweeping Jet Actuators With Different Flow-Control Techniques for Flow-Separation Control
,”
AIAA J.
,
55
(
3
), pp.
848
860
.10.2514/1.J055286
13.
Raghu
,
S.
,
2001
, “
Feedback-Free Fluidic Oscillator and Method
,” U.S. Patent No. 6,253,782.
14.
Spyropoulos
,
C. E.
,
1964
, “
A Sonic Oscillator
,”
Proceedings of the Fluid Amplification Symposium
,
Harry Diamond Lab
., Adelphi, MD, May 26-28, Vol.
III
, pp.
27
52
.
15.
Saliba
,
G.
,
Raimbault
,
V.
,
Batikh
,
A.
,
Colin
,
S.
, and
Baldas
,
L.
,
2023
, “
Relaxation Fluidic Oscillators: Design Parameters, New Operating Modes and Characteristics of Their Internal and External Flows
,”
ASME J. Fluids Eng.
,
145
(
10
), p.
101202
.10.1115/1.4062472
16.
Bohan
,
B. T.
,
Polanka
,
M. D.
, and
Rutledge
,
J. L.
,
2019
, “
Sweeping Jets Issuing From the Face of a Backward-Facing Step
,”
ASME J. Fluids Eng.
,
141
(
12
), p.
121201
.10.1115/1.4043576
17.
Hossain
,
M. A.
,
Ameri
,
A.
,
Gregory
,
J. W.
, and
Bons
,
J. P.
,
2021
, “
Effects of Fluidic Oscillator Nozzle Angle on the Flowfield and Impingement Heat Transfer
,”
AIAA J.
,
59
(
6
), pp.
2113
2125
.10.2514/1.J059931
18.
Nicholls
,
C. J.
, and
Bacic
,
M.
,
2023
, “
Fluidic Oscillator With Active Phase Control
,”
AIAA J.
,
61
(
5
), pp.
1973
1985
.10.2514/1.J062308
19.
Claus
,
G. C.
,
Hatton
,
A.
,
Bohan
,
B. T.
, and
Polanka
,
M. D.
,
2020
, “
Internal Geometry and External Wall Effects on Fluidic Oscillator Behavior
,”
ASME J. Fluids Eng.
,
142
(
11
), p.
111212
.10.1115/1.4047849
20.
Spens
,
A.
,
Brandt
,
P. J.
, and
Bons
,
J. P.
,
2022
, “
Characterization of Out-of-Plane Curved Fluidic Oscillators
,”
AIAA
Paper No. 2022–2424.10.2514/6.2022-2424
You do not currently have access to this content.