Abstract

In this article, we investigate the influence of the vertical throughflow Reynolds number on the instability of Poiseuille flow in a bidisperse porous medium. The Brinkman model was employed to describe fluid flow in the porous medium with large pores, referred to as “macropores,” while the Darcy model was utilized for fluid flow in the porous medium with small pores, referred to as “micropores”. The resulting eigenvalue system was solved using the Chebyshev collocation method (CCM), renowned for its accuracy and flexibility, rendering it one of the most reliable methods available. Regardless of its direction, the impact of the vertical throughflow Reynolds number on system instability is not uniform; it exhibits a dual nature, acting as a destabilizing factor at specific values while serving as a stabilizing influence at others. In the case of the permeability ratio, porous parameter, and interaction parameter, our observations indicate that elevating these parameters results in an enhancement of system stability.

References

1.
Nield
,
D.
, and
Kuznetsov
,
A.
,
2006
, “
The Onset of Convection in a Bidisperse Porous Medium
,”
Int. J. Heat Mass Transfer
,
49
(
17–18
), pp.
3068
3074
.10.1016/j.ijheatmasstransfer.2006.02.008
2.
Hooman
,
K.
,
Sauret
,
E.
, and
Dahari
,
M.
,
2015
, “
Theoretical Modelling of Momentum Transfer Function of bi-Disperse Porous Media
,”
Appl. Therm. Eng.
,
75
, pp.
867
870
.10.1016/j.applthermaleng.2014.10.067
3.
Straughan
,
B.
,
2015
,
Convection With Local Thermal Non-Equilibrium and Microfluidic Effects
, Vol.
32
,
Springer
, Berlin.
4.
Straughan
,
B.
,
2017
,
Mathematical Aspects of Multi-Porosity Continua
,
Springer
, Berlin.
5.
Nield
,
D.
, and
Kuznetsov
,
A. V.
,
2005
, “
A Two-Velocity Two-Temperature Model for a bi-Dispersed Porous Medium: Forced Convection in a Channel
,”
Transp. Porous Media
,
59
(
3
), pp.
325
339
.10.1007/s11242-004-1685-y
6.
Straughan
,
B.
,
2009
, “
On the Nield-Kuznetsov Theory for Convection in Bidispersive Porous Media
,”
Transp. Porous Media
,
77
(
2
), pp.
159
168
.10.1007/s11242-008-9307-8
7.
Nield
,
D.
, and
Kuznetsov
,
A. V.
,
2004
, “
Forced Convection in a bi-Disperse Porous Medium Channel: A Conjugate Problem
,”
Int. J. Heat Mass Transfer
,
47
(
24
), pp.
5375
5380
.10.1016/j.ijheatmasstransfer.2004.07.018
8.
Kuznetsov
,
A. V.
, and
Nield
,
D.
,
2006
, “
Thermally Developing Forced Convection in a Bidisperse Porous Medium
,”
J. Porous Media
,
9
(
5
), pp.
393
402
.10.1615/JPorMedia.v9.i5.10
9.
Nield
,
D.
, and
Kuznetsov
,
A. V.
,
2007
, “
The Effect of Combined Vertical and Horizontal Heterogeneity on the Onset of Convection in a Bidisperse Porous Medium
,”
Int. J. Heat Mass Transfer
,
50
(
17–18
), pp.
3329
3339
.10.1016/j.ijheatmasstransfer.2007.01.027
10.
Nield
,
D.
, and
Kuznetsov
,
A. V.
,
2008
, “
Natural Convection About a Vertical Plate Embedded in a Bidisperse Porous Medium
,”
Int. J. Heat Mass Transfer
,
51
(
7–8
), pp.
1658
1664
.10.1016/j.ijheatmasstransfer.2007.07.011
11.
Nield
,
D.
, and
Kuznetsov
,
A. V.
,
2011
, “
Forced Convection in a Channel Partly Occupied by a Bidisperse Porous Medium: Symmetric Case
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
133
(
7
), p.
072601
.10.1115/1.4003667
12.
Nield
,
D.
, and
Kuznetsov
,
A. V.
,
2013
, “
A Note on Modeling High Speed Flow in a Bidisperse Porous Medium
,”
Transp. Porous Media
,
96
(
3
), pp.
495
499
.10.1007/s11242-012-0102-1
13.
Rees
,
D.
,
Nield
,
D.
, and
Kuznetsov
,
A. V.
,
2008
, “
Vertical Free Convective Boundary-Layer Flow in a Bidisperse Porous Medium
,”
ASME J. Heat Transfer-Trans. ASME
,
130
(
9
), p.
092601
.10.1115/1.2943304
14.
Gentile
,
M.
, and
Straughan
,
B.
,
2017
, “
Bidispersive Thermal Convection
,”
Int. J. Heat Mass Transfer
,
114
, pp.
837
840
.10.1016/j.ijheatmasstransfer.2017.06.095
15.
Straughan
,
B.
,
2018
, “
Horizontally Isotropic Bidispersive Thermal Convection
,”
Proc. R. Soc. A
,
474
(
2213
), p.
20180018
.10.1098/rspa.2018.0018
16.
Straughan
,
B.
,
2018
, “
Bidispersive Double Diffusive Convection
,”
Int. J. Heat Mass Transfer
,
126
, pp.
504
508
.10.1016/j.ijheatmasstransfer.2018.05.056
17.
Gentile
,
M.
, and
Straughan
,
B.
,
2018
, “
Tridispersive Thermal Convection
,”
Nonlinear Anal. Real World Appl.
,
42
, pp.
378
386
.10.1016/j.nonrwa.2018.01.009
18.
Straughan
,
B.
,
2019
, “
Anisotropic Bidispersive Convection
,”
Proc. R. Soc. A
,
475
(
2227
), p.
20190206
.10.1098/rspa.2019.0206
19.
Straughan
,
B.
,
2019
, “
Effect of Inertia on Double Diffusive Bidispersive Convection
,”
Int. J. Heat Mass Transfer
,
129
, pp.
389
396
.10.1016/j.ijheatmasstransfer.2018.09.090
20.
Gentile
,
M.
, and
Straughan
,
B.
,
2020
, “
Bidispersive Thermal Convection With Relatively Large Macropores
,”
J. Fluid Mech.
,
898
, p.
A14
.10.1017/jfm.2020.411
21.
Challoob
,
H. A.
,
Harfash
,
A. J.
, and
Harfash
,
A. J.
,
2021
, “
Bidispersive Thermal Convection With Relatively Large Macropores and Generalized Velocity and Temperature Boundary Conditions
,”
Phys. Fluids
,
33
(
1
), p.
014105
.10.1063/5.0035938
22.
Challoob
,
H. A.
,
Harfash
,
A. J.
, and
Harfash
,
A. J.
,
2021
, “
Bidispersive Double Diffusive Convection With Relatively Large Macropores and Generalized Boundary Conditions
,”
Phys. Fluids
,
33
(
3
), p.
034114
.10.1063/5.0043340
23.
Badday
,
A. J.
, and
Harfash
,
A. J.
,
2021
, “
Chemical Reaction Effect on Convection in Bidispersive Porous Medium
,”
Transp. Porous Media
,
137
(
2
), pp.
381
397
.10.1007/s11242-021-01566-6
24.
Badday
,
A. J.
, and
Harfash
,
A. J.
,
2021
, “
Double-Diffusive Convection in Bidispersive Porous Medium With Chemical Reaction and Magnetic Field Effects
,”
Transp. Porous Media
,
139
(
1
), pp.
45
66
.10.1007/s11242-021-01642-x
25.
Badday
,
A. J.
, and
Harfash
,
A. J.
,
2021
, “
Stability of Darcy Thermosolutal Convection in Bidispersive Porous Medium With Reaction
,”
Asia-Pac. J. Chem. Eng.
,
16
(
5
), p.
e2682
.10.1002/apj.2682
26.
Badday
,
A. J.
, and
Harfash
,
A. J.
,
2022
, “
Thermosolutal Convection in a Brinkman Porous Medium With Reaction and Slip Boundary Conditions
,”
J. Porous Media
,
25
(
1
), pp.
15
29
.10.1615/JPorMedia.2021038795
27.
Badday
,
A. J.
, and
Harfash
,
A. J.
,
2022
, “
Thermosolutal Convection in Rotating Bidispersive Porous Media With General Boundary Conditions
,”
Spec. Top. Rev. Porous Media
,
13
(
6
), pp.
29
48
.10.1615/SpecialTopicsRevPorousMedia.2022044251
28.
Badday
,
A. J.
, and
Harfash
,
A. J.
,
2023
, “
Thermosolutal Convection in a Bidisperse Porous Medium With Chemical Reaction Effect and Relatively Large Macropores
,”
J. Porous Media
,
26
(
2
), pp.
31
49
.10.1615/JPorMedia.2022041301
29.
Nield
,
D.
,
2003
, “
The Stability of Flow in a Channel or Duct Occupied by a Porous Medium
,”
Int. J. Heat Mass Transfer
,
46
(
22
), pp.
4351
4354
.10.1016/S0017-9310(03)00105-4
30.
Hill
,
A. A.
, and
Straughan
,
B.
,
2010
, “
Stability of Poiseuille Flow in a Porous Medium
,”
Advances in Mathematical Fluid Mechanics
,
Springer
, New York, pp.
287
293
.
31.
Straughan
,
B.
, and
Harfash
,
A. J.
,
2013
, “
Instability in Poiseuille Flow in a Porous Medium With Slip Boundary Conditions
,”
Microfluid. Nanofluid.
,
15
(
1
), pp.
109
115
.10.1007/s10404-012-1131-3
32.
Shankar
,
B.
, and
Shivakumara
,
I.
,
2020
, “
Stability of porous-Poiseuille Flow With Uniform Vertical Throughflow: High Accurate Solution
,”
Phys. Fluids
,
32
(
4
), pp.
044101
.10.1063/1.5143170
33.
Badday
,
A. J.
, and
Harfash
,
A. J.
,
2022
, “
Instability in Poiseuille Flow in a Porous Medium With Slip Boundary Conditions and Uniform Vertical Throughflow Effects
,”
J. Eng. Math.
,
135
(
1
), pp.
1
17
.10.1007/s10665-022-10231-w
34.
Badday
,
A. J.
, and
Harfash
,
A. J.
,
2022
, “
Magnetohydrodynamic Instability of Fluid Flow in a Porous Channel With Slip Boundary Conditions
,”
Appl. Math. Comput.
,
432
, p.
127363
.10.1016/j.amc.2022.127363
35.
Lopes
,
A. V. B.
, and
Siqueira
,
I.
,
2022
, “
Couette–Poiseuille Flow in Semi-Elliptic Channels
,”
ASME J. Fluids Eng.
,
144
(
10
), pp.
101302
.10.1115/1.4054356
36.
Xu
,
L.
, and
Zhang
,
Y.
,
2022
, “
Adjoint Analysis of Plane Poiseuille Flow Global and Convective Stability
,”
ASME J. Fluids Eng.
,
144
(
11
), pp.
111301
.10.1115/1.4054958
37.
Xu
,
L.
, and
Rusak
,
Z.
,
2022
, “
The Stability of Plane Poiseuille Flow in a Finite-Length Channel
,”
ASME J. Fluids Eng.
,
144
(
5
), p.
051302
.10.1115/1.4052643
38.
Fransson
,
J. H.
, and
Alfredsson
,
P. H.
,
2003
, “
On the Hydrodynamic Stability of Channel Flow With Cross Flow
,”
Phys. Fluids
,
15
(
2
), pp.
436
441
.10.1063/1.1533076
39.
Hains
,
F.
,
1971
, “
Stability of Plane Couette-Poiseuille Flow With Uniform Crossflow
,”
Phys. Fluids
,
14
(
8
), pp.
1620
1623
.10.1063/1.1693655
40.
Sheppard
,
D. M.
,
1972
, “
Hydrodynamic Stability of the Flow Between Parallel Porous Walls
,”
Phys. Fluids
,
15
(
2
), pp.
241
244
.10.1063/1.1693900
41.
Nield
,
D.
,
1987
, “
Throughflow Effects in the Rayleigh-Bénard Convective Instability Problem
,”
J. Fluid Mech.
,
185
, pp.
353
360
.10.1017/S0022112087003203
42.
Chen
,
F.
,
1991
, “
Throughflow Effects on Convective Instability in Superposed Fluid and Porous Layers
,”
J. Fluid Mech.
,
231
, pp.
113
133
.10.1017/S0022112091003336
43.
Shankar
,
B.
, and
Shivakumara
,
I.
,
2021
, “
Changes in the Hydrodynamic Stability of Plane porous-Couette Flow Due to Vertical Throughflow
,”
Phys. Fluids
,
33
(
7
), pp.
074103
.10.1063/5.0054179
44.
Harfash
,
A. J.
,
2014
, “
Stability Analysis of Penetrative Convection in Anisotropic Porous Media With Variable Permeability
,”
J. Non-Equilib. Thermodyn.
,
39
(
3
), pp.
123
133
.10.1515/jnet-2014-0009
45.
Harfash
,
A. J.
,
2014
, “
Three Dimensions Simulation for the Problem of a Layer of Non-Boussinesq Fluid Heated Internally With Prescribed Heat Flux on the Lower Boundary and Constant Temperature Upper Surface
,”
Int. J. Eng. Sci.
,
74
, pp.
91
102
.10.1016/j.ijengsci.2013.08.011
46.
Harfash
,
A. J.
, and
Alshara
,
A. K.
,
2016
, “
On the Stationary and Oscillatory Modes of Triply Resonant Penetrative Convection
,”
Int. J. Numer. Methods Heat Fluid
,
26
(
5
), pp.
1391
1415
.10.1108/HFF-03-2015-0092
47.
Harfash
,
A. J.
,
2016
, “
Nonhomogeneous Porosity and Thermal Diffusivity Effects on a Double-Diffusive Convection in Anisotropic Porous Media
,”
Int. J Nonlinear Sci. Numer. Simul.
,
17
(
5
), pp.
205
220
.10.1515/ijnsns-2015-0139
48.
Harfash
,
A. J.
, and
Nashmi
,
F. K.
,
2017
, “
Triply Resonant Double Diffusive Convection in a Fluid Layer
,”
Math. Model. Anal.
,
22
(
6
), pp.
809
826
.10.3846/13926292.2017.1384765
49.
Hameed
,
A. A.
, and
Harfash
,
A. J.
,
2019
, “
Unconditional Nonlinear Stability for Double-Diffusive Convection in a Porous Medium With Temperature-Dependent Viscosity and Density
,”
Heat Transfer Asian Res.
,
48
(
7
), pp.
2948
2973
.10.1002/htj.21525
50.
Challoob
,
H. A.
,
Mathkhor
,
A. J.
, and
Harfash
,
A. J.
,
2020
, “
Slip Boundary Condition Effect on Double-Diffusive Convection in a Porous Medium: Brinkman Model
,”
Heat Transfer Asian Res.
,
49
(
1
), pp.
258
268
.10.1002/htj.21610
51.
Harfash
,
A. J.
, and
Hameed
,
A. A.
,
2021
, “
Stability of Double-Diffusive Convection in a Porous Medium With Temperature-Dependent Viscosity: Brinkman–Forchheimer Model
,”
Bull. Malays. Math. Sci. Soc.
,
44
(
3
), pp.
1275
1307
.10.1007/s40840-020-01013-7
52.
A L-Yasiri
,
K.
,
Challoob
,
H. A.
,
Harfash
,
A. J.
, and
Alshara
,
A. K.
,
2022
, “
Linear and Nonlinear Stability Analyses of Penetrative Convection in Porous Media With a Gravity Field Effect
,”
Partial Differ. Equation Appl.
,
5
, p.
100368
.10.1016/j.padiff.2022.100368
53.
Badday
,
A. J.
, and
Harfash
,
A. J.
,
2023
, “
The Effects of the Soret and Slip Boundary Conditions on Thermosolutal Convection With a Navier–Stokes–Voigt Fluid
,”
Phys. Fluids
,
35
(
1
), p.
014101
.10.1063/5.0128993
54.
Dongarra
,
J.
,
Straughan
,
B.
, and
Walker
,
D.
,
1996
, “
Chebyshev Tau-qz Algorithm Methods for Calculating Spectra of Hydrodynamic Stability Problems
,”
Appl. Numer. Math.
,
22
(
4
), pp.
399
434
.10.1016/S0168-9274(96)00049-9
55.
Yecko
,
P.
,
2008
, “
Disturbance Growth in Two-Fluid Channel Flow: The Role of Capillarity
,”
Int. J. Multiphase Flow
,
34
(
3
), pp.
272
282
.10.1016/j.ijmultiphaseflow.2007.09.005
You do not currently have access to this content.