Abstract

The fluidic behaviors and interactions present in a setup utilizing perforated blockages and downstream pin-fin are elucidated: specifically, the role of jet curvature in flow interactions and the interaction of end-wall flows around the pin-fins subjected to impinging jet. To this end, a combination of particle image velocimetry-based measurements and oil-dye surface flow visualization technique is utilized. Two different configurations of jet flows, with or without flanking jets, and three different distances between the pin-fins and blockages were considered. Jet curvature can result in flow inclinations of as much as 45 deg–60 deg interacting with the pin-fins and the majority of the jet flow is skewed toward the inner side of the pin-fin. At the end-wall, the interaction with nearby structures, being blockages or pin-fins, alters the shape and profile of the flows. This alteration is in contrast to those around conventional pin-fin arrays which remain largely unaltered in the presence of nearby pin-fins.

References

1.
Krause
,
D. A.
,
Mongillo
,
D. J.
,
Soechting
,
F. O.
, and
Zelesky
,
M. F.
,
1999
, “
Turbomachinery Airfoil With Optimised Heat Transfer
,” U.S. Patent No. 5,931,638.
2.
Kan
,
R.
,
Ren
,
J.
, and
Jiang
,
H.
,
2014
, “
Combined Effects of Perforated Blockages and Pin Fins in a Trailing Edge Internal Cooling Duct
,”
ASME
Paper No. GT2014-25767. 10.1115/GT2014-25767
3.
Kim
,
Y.
,
Choi
,
S. M.
,
Park
,
H. S.
,
Kim
,
S. W.
,
Jung
,
E. Y.
,
Park
,
J. S.
, and
Cho
,
H. H.
,
2019
, “
Heat Transfer Characteristics of the Rib Angle in the Pin-Fin Cooling Combined With Perforated Blockage
,”
Trans. Korean Soc. Mech. Eng. B
,
43
(
7
), pp.
453
461
.10.3795/KSME-B.2019.43.7.453
4.
Baker
,
C. J.
,
1980
, “
The Turbulent Horseshoe Vortex
,”
J. Wind Eng. Ind. Aerodyn.
,
6
(
1–2
), pp.
9
23
.10.1016/0167-6105(80)90018-5
5.
Schekman
,
S.
,
Atkins
,
M. D.
, and
Kim
,
T.
,
2019
, “
Local End-Wall Heat Transfer Enhancement by Jet Impingement on a Short Pin-Fin
,”
Int. J. Heat Mass Transfer
,
128
, pp.
1033
1047
.10.1016/j.ijheatmasstransfer.2018.09.056
6.
Goldstein
,
R. J.
, and
Chen
,
S. B.
,
1998
, “
Flow and Mass Transfer Performance in Short Pin-Fin Channels With Different Fin Shapes
,”
Int. J. Rotating Mach.
,
4
(
2
), pp.
113
128
.10.1155/S1023621X98000104
7.
Chyu
,
M. K.
,
Hsing
,
Y. C.
, and
Natarajan
,
V.
,
1998
, “
Convective Heat Transfer of Cubic Fin Arrays in a Narrow Channel
,”
ASME J. Turbomach.
,
120
(
2
), pp.
362
367
.10.1115/1.2841414
8.
Ghahremanian
,
S.
,
Svensson
,
K.
,
Tummers
,
M. J.
, and
Moshfegh
,
B.
,
2014
, “
Near-Field Mixing of Jets Issuing From an Array of Round Nozzles
,”
Int. J. Heat Fluid Flow
,
47
, pp.
84
100
.10.1016/j.ijheatfluidflow.2014.01.007
9.
Gordon
,
E. B.
, and
Gerber
,
I.
,
1990
, “
The Entrainment Rate for a Row of Turbulent Jets
,”
NASA
, OH, Report No. CR-185278.
10.
Laban
,
A.
,
Aleyasin
,
S. S.
,
Tachie
,
M. F.
, and
Koupriyanov
,
M.
,
2019
, “
Experimental Investigation of Nozzle Spacing Effects on Characteristics of Round Twin Free Jets
,”
ASME J. Fluids Eng.
,
141
(
7
), p.
071201
.10.1115/1.4041989
11.
Svensson
,
K.
,
Rohdin
,
P.
, and
Moshfegh
,
B.
,
2016
, “
On the Influence of Array Size and Jet Spacing on Jet Interactions and Confluence in Round Jet Arrays
,”
ASME J. Fluids Eng.
,
138
(
8
), p.
081206
.10.1115/1.4033024
12.
Tanaka
,
E.
,
1974
, “
Interference of Two-Dimensional Parallel Jets–2. Experiments on the Combined Flow of Dual Jet
,”
Bull JSME
,
17
(
109
), pp.
920
927
.10.1299/jsme1958.17.920
13.
Tanaka
,
E.
,
1969
, “
The Interference of Two-Dimensional Parallel Jets: 1st Report Experiments on Dual Jet
,”
Trans. Jpn. Soc. Mech. Eng.
,
35
(
274
), pp.
1257
1264
.10.1299/kikai1938.35.1257
14.
Gauntner
,
J. W.
,
Livingood
,
B.
, and
Hrycak
,
P.
,
1970
, “
Survey of Literature on Flow Characteristics of a Single Turbulent Jet Impinging on a Flat Plate
,”
NASA
, Washington, DC, Report No. TN D-5652 NTIS N79-18963.
15.
Hrycak
,
P.
,
Lee
,
D. T.
,
Gaunter
,
J. W.
, and
Livingood
,
J. N. B.
,
1970
, “
Experimental Flow Characteristics of a Single Turbulent Jet Impinging on a Flat Plate
,”
NASA
, Washington, DC, Report No. TN D-5690.
16.
Moon
,
S. W.
, and
Lau
,
S. C.
,
2003
, “
Heat Transfer Between Blockages With Holes in a Rectangular Channel
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
125
(
4
), pp.
587
594
.10.1115/1.1576812
17.
Shin
,
S.
, and
Kwak
,
J. S.
,
2008
, “
Effect of Hole Shape on the Heat Transfer in a Rectangular Duct With Perforated Blockage Walls
,”
J. Mech. Sci. Technol.
,
22
(
10
), pp.
1945
1951
.10.1007/s12206-008-0736-7
18.
Park
,
J. S.
,
Jo
,
Y. H.
, and
Kwak
,
J. S.
,
2016
, “
Heat Transfer in a Rectangular Duct With Perforated Blockages and Dimpled Side Walls
,”
Int. J. Heat Mass Transfer
,
97
, pp.
224
231
.10.1016/j.ijheatmasstransfer.2016.01.081
19.
Ahn
,
H. S.
,
Lee
,
S. W.
,
Lau
,
S. C.
, and
Banerjee
,
D.
,
2007
, “
Mass (Heat) Transfer Downstream of Blockages With Round and Elongated Holes in a Rectangular Channel
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
129
(
12
), pp.
1676
1685
.10.1115/1.2767748
20.
Lau
,
S. C.
,
Cervantes
,
J.
,
Han
,
J. C.
,
Rudolph
,
R. J.
, and
Flannery
,
K.
,
2003
, “
Measurements of Wall Heat (Mass) Transfer for Flow Through Blockages With Round and Square Holes in a Wide Rectangular Channel
,”
Int. J. Heat Mass Transfer
,
46
(
21
), pp.
3991
4001
.10.1016/S0017-9310(03)00246-1
21.
Wang
,
X. L.
,
Yan
,
H. B.
,
Lu
,
T. J.
,
Song
,
S. J.
, and
Kim
,
T.
,
2014
, “
Heat Transfer Characteristics of an Inclined Impinging Jet on a Curved Surface in Crossflow
,”
ASME Int. J. Heat Transfer
,
136
(
8
), p.
081702
.10.1115/1.4027389
22.
Lim
,
K. B.
,
Lee
,
C. H.
,
Sung
,
N. W.
, and
Lee
,
S. H.
,
2007
, “
An Experimental Study on the Characteristics of Heat Transfer on the Turbulent Round Impingement Jet According to the Inclined Angle of Convex Surface Using the Liquid Crystal Transient Method
,”
Exp. Therm. Fluid Sci.
,
31
(
7
), pp.
711
719
.10.1016/j.expthermflusci.2006.07.005
23.
Liu
,
Y. Y.
,
Schekman
,
S. W.
,
Bhaiyat
,
T. I.
,
Lu
,
T. J.
, and
Kim
,
T.
,
2022
, “
Impingement Cooling of an Isoflux Flat Plate by Blockage Jet
,”
Appl. Therm. Eng.
,
209
(
118239
), pp.
118239
12
.10.1016/j.applthermaleng.2022.118239
24.
Ward-Smith
,
A. J.
,
1971
,
Pressure Losses in Ducted Flow
,
Cambridge University Press
, London.
25.
Chyu
,
M. K.
,
1990
, “
Heat Transfer and Pressure Drop for Short Pin-Fin Arrays With Pin-Endwall Fillet
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
112
(
4
), pp.
926
932
.10.1115/1.2910502
26.
McNaughton
,
K. J.
, and
Sinclair
,
C. G.
,
1966
, “
Submerged Jets in Short Cylindrical Flow Vessels
,”
J. Fluid Mech.
,
25
(
2
), pp.
367
375
.10.1017/S0022112066001708
27.
Nguepnang
,
M. A.
,
Boer
,
M.
, and
Kim
,
T.
,
2016
, “
Stagnation Heat Transfer on a Concave Surface Cooled by Unconfined Slot Jet
,”
J. Thermophys. Heat Trans.
,
30
(
3
), pp.
558
566
.10.2514/1.T4793
28.
Atkins
,
M. D.
, and
Kim
,
T.
,
2015
, “
Isotropic-Planar Illumination for PIV Experiments
,”
Exp. Fluids
,
56
(
3
), p.
63
.10.1007/s00348-015-1932-8
29.
Baker
,
C. J.
,
1979
, “
The Laminar Horseshoe Vortex
,”
J. Fluid Mech.
,
95
(
2
), pp.
347
367
.10.1017/S0022112079001506
30.
Kim
,
T.
,
Lu
,
T. J.
, and
Song
,
S. J.
,
2016
,
Application of Thermo-Fluidic Measurement Techniques: An Introduction
,
Butterworth-Heinemann
, Oxford, UK.
31.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
2018
,
Experimentation, Validation, and Uncertainty Analysis for Engineers
,
Wiley
, Hoboken, NJ.
32.
Westerweel
,
J.
,
2000
, “
Theoretical Analysis of the Measurement Precision in Particle Image Velocimetry
,”
Exp. Fluids
,
29
(
7
), pp.
S003
S012
.
33.
Adrian
,
R. J.
, and
Westerweel
,
J.
,
2011
,
Particle Image Velocimetry
,
Cambridge University Press
, London.
34.
Westerweel
,
J.
,
2008
, “
On Velocity Gradients in PIV Interrogation
,”
Exp. Fluids
,
44
(
5
), pp.
831
842
.10.1007/s00348-007-0439-3
You do not currently have access to this content.