Abstract

It is extremely difficult, if not impossible, for existing force balances to capture very small skin-friction drag (SFD) in a perturbed turbulent boundary layer (TBL), which is characterized by the unpredictable, nonuniform distribution of static surface pressure. A novel force balance is proposed, which combines the level principle, as deployed in Cheng et al.'s (2020, “A High-Resolution Floating-Element Force Balance for Friction Drag Measurement,” Meas. Sci. Technol., 32, p. 035301) force balance, with a single-degree-of-freedom air bearing mechanism. This mechanism acts to eliminate disturbances, such as nonuniform static pressure on the wall associated with high Reynolds number TBL or a TBL under control. As a result, the developed balance may be used to accurately measure SFD in the order of 10−3 N in a TBL with or without control. This balance has been successfully applied to measure the drag reduction (DR) of a TBL manipulated using one array of streamwise microjets, at friction Reynolds number Reτ = 3340 ∼ 5480.

References

1.
Brown
,
G.
, and
Thomas
,
A.
,
1977
, “
Large Structure in a Turbulent Boundary Layer
,”
Phys. Fluids
,
20
, pp.
243
252
.10.1063/1.861737
2.
Choi
,
K.-S.
,
Debisschop
,
J.-R.
, and
Clayton
,
B. R.
,
1998
, “
Turbulent Boundary-layer control by Means of Spanwise-Wall Oscillation
,”
AIAA J.
,
36
(
7
), pp.
1157
1163
.10.2514/2.526
3.
Choi
,
K.-S.
, and
Clayton
,
B. R.
,
2001
, “
The Mechanism of Turbulent Drag Reduction With Wall Oscillation
,”
Int. J. Heat Fluid Flow
,
22
(
1
), pp.
1
9
.10.1016/S0142-727X(00)00070-9
4.
Choi
,
K.-S.
,
2002
, “
Near-Wall Structure of Turbulent Boundary Layer With Spanwise-Wall Oscillation
,”
Phys. Fluids
,
14
(
7
), pp.
2530
2542
.10.1063/1.1477922
5.
Cheng
,
X. Q.
,
Wong
,
C. W.
,
Hussain
,
F.
,
Schröder
,
W.
, and
Zhou
,
Y.
,
2021
, “
Flat Plate Drag Reduction Using Plasma-Generated Streamwise Vortices
,”
J. Fluid Mech.
,
918
, p.
A24
.10.1017/jfm.2021.311
6.
Cheng
,
X. Q.
,
Wong
,
C. W.
, and
Zhou
,
Y.
,
2020
, “
A High-Resolution Floating-Element Force Balance for Friction Drag Measurement
,”
Meas. Sci. Technol.
,
32
, p.
035301
.10.1088/1361-6501/abb33d
7.
Wei
,
X. H.
, and
Zhou
,
Y.
,
2023
, “
Scaling of Skin-Friction Reduction Based on Plasma-Generated Streamwise Vortices
,”
Sixth Symposium on Fluid-Structure-Sound Interactions and Control
, Busan, South Korea, Aug. 27–31, Paper No. P00127.
8.
Corke
,
T. C.
, and
Thomas
,
F. O.
,
2018
, “
Active and Passive Turbulent Boundary Layer Drag Reduction
,”
AIAA J.
,
56
(
10
), pp.
3835
3847
.10.2514/1.J056949
9.
Thomas
,
F. O.
,
Corke
,
T. C.
,
Duong
,
A.
,
Midya
,
S.
, and
Yates
,
K.
,
2019
, “
Turbulent Drag Reduction Using Pulsed-DC Plasma Actuation
,”
J. Phys. D: Appl. Phys.
,
52
(
43
), p.
434001
.10.1088/1361-6463/ab3388
10.
Duong
,
A. H.
,
Corke
,
T. C.
, and
Thomas
,
F. O.
,
2021
, “
Characteristics of Drag-Reduced Turbulent Boundary Layers With Pulsed-Direct-Current Plasma Actuation
,”
J. Fluid Mech.
,
915
, p.
A113
.10.1017/jfm.2021.167
11.
Hwang
,
D. P.
,
1997
, “
A Proof of Concept Experiment for Reducing Skin Friction by Using a Micro-Blowing Technique
,”
AIAA
Paper No. 97-0546.10.2514/6.1997-546
12.
Kametani
,
Y.
, and
Fukagata
,
K.
,
2011
, “
Direct Numerical Simulation of Spatially Developing Turbulent Boundary Layers With Uniform Blowing or Suction
,”
J. Fluid Mech.
,
681
, pp.
154
172
.10.1017/jfm.2011.219
13.
Kornilov
,
V. I.
,
2015
, “
Current State and Prospects of Researches on the Control of Turbulent Boundary Layer by Air Blowing
,”
Prog. Aeronaut. Sci.
,
76
, pp.
1
23
.10.1016/j.paerosci.2015.05.001
14.
Cheng
,
X. Q.
,
Qiao
,
Z. X.
,
Zhang
,
X.
,
Quadrio
,
M.
, and
Zhou
,
Y.
,
2021
, “
Skin-Friction Reduction Using Periodic Blowing Through Streamwise Slits
,”
J. Fluid Mech.
,
920
, p.
A50
.10.1017/jfm.2021.439
15.
Spalart
,
P. R.
, and
Mclean
,
J. D.
,
2011
, “
Drag Reduction: Enticing Turbulence, and Then an Industry
,”
Philos. Trans. A: Math. Phys. Eng. Sci
,
369
(
1940
), pp.
1556
1569
.10.1098/rsta.2010.0369
16.
Hwang
,
D. P.
, and
Biesiadny
,
T. J.
,
1998
, “
Experimental Evaluation of Penalty Associated With Micro-Blowing for Reducing Skin Friction
,”
AIAA
Paper No. AIAA-98-0677.10.2514/6.1998-677
17.
Zhang
,
X.
,
Wong
,
C. W.
,
Cheng
,
X. Q.
, and
Zhou
,
Y.
,
2022
, “
Dependence of Skin-Friction Reduction on the Geometric Parameters of Blowing Jet Array
,”
Phys. Fluids
,
34
(
10
), p.
105125
.10.1063/5.0101289
18.
Danny
,
H.
,
2004
, “
Review of Research Into the Concept of the Microblowing Technique for Turbulent Skin Friction Reduction
,”
Prog. Aeosp. Sci.
,
40
, pp.
559
575
.10.1016/j.paerosci.2005.01.002
19.
Baars
,
W. J.
,
Squire
,
D. T.
,
Talluru
,
K. M.
,
Abbassi
,
M. R.
,
Hutchins
,
N.
, and
Marusic
,
I.
,
2016
, “
Wall-Drag Measurements of Smoothand Rough-Wall Turbulent Boundary Layers Using a Floating Element
,”
Exp. Fluids
,
57
(
5
), p.
90
.10.1007/s00348-016-2168-y
20.
Hwang
,
D. P.
,
2002
, “
Experimental Study of Characteristics of Micro-Hole Porous Skins for Turbulent Skin Friction Reduction
,”
Congress of the International Council of the Aeronautical Sciences
, Toronto, ON, Canada, p.
E-13418
.
21.
Sadr
,
R.
, and
Klewicki
,
J. C.
,
2000
, “
Surface Shear Stress Measurement System for Boundary Layer Flow Over a Salt Playa
,”
Meas. Sci. Technol.
,
11
(
9
), pp.
1403
1413
.10.1088/0957-0233/11/9/322
22.
Krogstad
,
P. A.
, and
Efros
,
V.
,
2010
, “
Rough Wall Skin Friction Measurements Using a High Resolution Surface Balance
,”
Int. J. Heat Fluid Flow
,
31
(
3
), pp.
429
433
.10.1016/j.ijheatfluidflow.2009.11.007
23.
Pujara
,
N.
, and
Liu
,
P. L. F.
,
2014
, “
Direct Measurements of Local Bed Shear Stress in the Presence of Pressure Gradients
,”
Exp. Fluids
,
55
(
7
), p.
1767
.10.1007/s00348-014-1767-8
24.
Park
,
J.
, and
Choi
,
H.
,
1999
, “
Effects of Uniform Blowing or Suction From a Spanwise Slot on a Turbulent Boundary Layer Flow
,”
Phys. Fluids
,
11
(
10
), pp.
3095
3105
.10.1063/1.870167
25.
Nagib
,
H. M.
,
Chauhan
,
K. A.
, and
Monkewitz
,
P. A.
,
2007
, “
Approach to an Asymptotic State for Zero Pressure Gradient Turbulent Boundary Layers
,”
Phil. Trans. R. Soc. A.
,
365
(
1852
), pp.
755
770
.10.1098/rsta.2006.1948
26.
Xi
,
L. C.
,
Quadrio
,
M.
, and
Zhou
,
Y.
,
2023
, “
Direct Numerical Simulation of Skin-Friction Reduction Using Steady and Periodic Blowing Through Streamwise Slits
,”
Sixth Symposium on Fluid-Structure-Sound Interactions and Control
, Busan, South Korea, Aug. 27–31, Paper No. P00159.
27.
Kametani
,
Y.
,
Fukagata
,
K.
,
Orlu
,
R.
, and
Schlatter
,
P.
,
2016
, “
Drag Reduction in Spatially Developing Turbulent Boundary Layers by Spatially Intermittent Blowing at Constant Mass-Flux
,”
J. Turbul.
,
17
(
10
), pp.
913
929
.10.1080/14685248.2016.1192285
You do not currently have access to this content.