Cavitation damage to specimens of stainless steel, carbon steel, aluminum, and plexiglas, placed in a cavitating venturi using water and mercury as test fluids is mostly in the form of irregularly shaped pits which do not change with additional exposure to the cavitating field within the limited durations utilized. The rate of damage is very high initially, decreases for a relatively short period of time, then increases again up to the maximum test durations of 150 hours with water and 270 hours with mercury. Observation of damage effects by several independent techniques, using a variety of specimen materials, with two different fluids under various fluid dynamic conditions, leads to a suggested correlating model in terms of the cavitation bubble density and energy and specimen material strength.

This content is only available via PDF.
You do not currently have access to this content.