Abstract

This work experimentally investigated the flow phenomena and vortex structures in the wake of a sphere located in a water loop at Reynolds numbers of Re = 850, 1,250, and 1,700. Velocity fields in the wake region were obtained by applying the time-resolved stereoscopic particle image velocimetry (TR-SPIV) technique. From the acquired TR-SPIV velocity vector fields, the statistical values of mean and fluctuating velocities were computed. Spectral analysis, two-point velocity–velocity cross-correlation, proper orthogonal decomposition (POD) and vortex identification analyses were also performed. The velocity fields show a recirculation region that decreases in length with an increase of Reynolds numbers. The power spectra from the spectral analysis had peaks corresponding to a Strouhal number of St = 0.2, which is a value commonly found in the literature studies of flow over a sphere. The two-point cross-correlation analysis revealed elliptical structures in the wake, with estimated integral length scales ranging between 12% and 63% of the sphere diameter. The POD analysis revealed the statistically dominant flow structures that captured the most flow kinetic energy. It is seen that the flow kinetic energy captured in the smaller scale flow structures increased as Reynolds number increased. The POD modes contained smaller structure as the Reynolds number increased and as mode order increased. In addition, spectral analysis performed on the POD temporal coefficients revealed peaks corresponding to St = 0.2, similar to the spectral analysis on the fluctuating velocity. The ability of POD to produce low-order reconstructions of the flow was also utilized to facilitate vortex identification analysis, which identified average vortex sizes of 0.41D for Re1, 0.33D for Re2, and 0.32D for Re3.

1 Introduction

The flow over bluff bodies exhibits complex flow phenomena, even at low Reynolds numbers, and thus a variety of bluff bodies have been studied for further understanding of the flow phenomena [14]. The flow over a sphere is of particular interest and has been studied for many years due to its practical and academic importance [5,6]. Spheres can be used as idealized models for many axisymmetric bluff bodies. Flow past bluff bodies can cause many complex flow phenomena such as vortex shedding and flow separation. Although spheres are axisymmetric, the flow around spheres creates a wide variety of flow phenomena depending on the Reynolds number (Re). Flow over a sphere is laminar and axisymmetric in the Reynolds number range between 20 and 210 [7,8]. Above Re = 210, the flow becomes steady planar-symmetric up to Re = 270 [9]. The flow is still attached, with two vortex tails with equal but opposite sign up to Re = 270 [10], and transitions to an unsteady wake, shedding interconnected vortex loops until Re = 300 [11]. From Re = 400 to 1,000, vortices are shed and the vortex shedding angle oscillates causing the planar flow symmetry to be lost. In this range, the flow remains unsteady but becomes asymmetric [12]. Between Re = 650 and Re = 800, the hairpin vortices shed transition from laminar to turbulent. Starting at Re = 800, the shear layer begins to experience Kelvin–Helmholtz instabilities, smaller scales appear, and the flow becomes more chaotic [13]. Beyond Re = 1,000, the vortex loops that are shed diffuse rapidly [14]. This instability continues to develop until Re = 3,000, where the shear layer begins to transition to turbulent [15]. At Reynolds numbers higher than the critical Reynolds number of Re=3×105, the near-wake region shrinks and the sphere experiences a side force [16].

Experimentally investigating the wake of a sphere is challenging due to the need of fixing the sphere in the flow with minimal disturbance to the flow field. Typical supports have been azimuthally symmetric thin wires [17,18] and rigid downstream supports [19]. Upstream supports mounted to a rigid honeycomb structure have also been used to allow for particle image velocimetry (PIV) measurements to be made without the flow in the wake being disturbed [20]. The authors found that the honeycomb structure caused only 2.2% inhomogeneity in the mean flow. Many experimental and numerical studies have been conducted on flow over a sphere, and high quality experimental data are always needed for use in computational fluid dynamics (CFD) code validation.

Optical methods have become widely accepted to be accurate techniques to measure fluid velocity fields, and have been used to study flow in various geometries [2123]. Stereoscopic PIV (SPIV) has been utilized to study other fundamental fluid mechanics problems, such as flow in a pipe, in the laminar, transition, and turbulent regimes [24,25]. PIV has also been used in other bluff body studies and high shear flows, such as a truncated cylinder with a spherically blunted nose [26], and Ahmed bodies [27], and jets [28,29]. Digital PIV measurements for a sphere and a cylinder with an elliptic nose and blunt base at Re = 500, 700, and 1,000 have also been conducted [30]. The mean velocity fields were presented, and spectral analysis was used to extract the vortex shedding frequencies. The authors concluded that the loss of planar symmetry was due to the imbalance of long helical waves. Other experimental studies have been conducted at similar Reynolds numbers. One of these studies tomographic PIV measurements conducted by Eshbal et al. [31] at Reynolds numbers between 400 and 2,000. The study focused on visualization of hairpin vortices that had previously been observed by CFD simulations. Another study comparing a smooth sphere to a rough sphere similar to a pinecone was conducted by David et al. [32] at 226 < Re < 5,000. They concluded for the rough sphere that the recirculating length was minimized at Re = 900, and that the roughness enhanced mixing. Doh et al. utilized three-dimensional (3D)-particle tracking velocimetry (PTV) to quantitatively investigate the hairpin vortices shed in the wake of a sphere at Re = 1,130 [33].

Other authors have employed PIV to make measurements in the wake of a sphere at Re=11,000 in a water channel [17], and computed turbulent statistics with the intent of validating numerical simulations. Tomographic PIV has also been used to visualize the hairpin vortices in the wake of a sphere at Re = 465 [34]. The authors found that hairpin vortices were shed from the recirculating near-wake region, and were advected downstream, while the interaction between the recirculation region and the outer shear flow created a saddle point. They provided two-dimensional (2D) plots of the outline of the wake and ensemble-averaged statistics, and 3D surfaces of the Q criterion. Similar results can be seen from other numerical simulations [35]. Previous studies measured the wake properties of a sphere in a wind tunnel using a hot-wire probe, and reported integral length scale values around 30% of the diameter of the sphere [36]. Various simulations of flow around a sphere have also been conducted to investigate the flow phenomena in the wake of a sphere. In two studies that presented direct numerical simulation (DNS) investigations of flow over a sphere for Reynolds numbers of 3,700 and 10,000 [37,38], the authors found that the wake structure was similar between the two Reynolds numbers, exhibiting a helical-like structure due to instabilities, and that the recirculation length decreased with an increase in Reynolds number. The authors also found that the wake is dominated by three types of instability mechanism: large-scale vortex shedding, Kelvin–Helmholtz instability of the shear layer, and modulation of the recirculation region. Another DNS study of flow over a sphere for different Froude numbers (Fr) at Re=3,700 [39] found that the flow structure changes significantly for highly stratified wakes with Fr0.125. Another group used large eddy simulations and PIV investigations at Re=5,000 of flow around a sphere [40]. The authors observed that the presence of energy containing eddies increased velocity fluctuations.

As discussed above, several investigations have reported PIV data on flow about a single sphere. These studies have provided statistical color contours, along with spectral analysis of the flow in the wake. This paper discusses the study of water flow over a single sphere at subcritical Reynolds numbers of Re = 850, 1,250, and 1,700. In this work, in addition to the high-resolution time-resolved SPIV (TR-SPIV) data on flow over a sphere, detailed analyses of the flow structures in the sphere's wake using proper orthogonal decomposition (POD) and two-point cross-correlation are presented. This type of measurement allows for investigations of the coherent structures in the near wake region, along with their temporal behavior. High fidelity experimental data with high spatial and temporal resolution is also essential for validation of numerical codes. The data acquired in this study could be used as the first step for validation of CFD codes like NEK5000. The rest of this paper is as follows: the experimental setup for TR-SPIV measurements in the wake of a sphere is discussed in Sec. 2. The statistical results are presented in Sec. 3, along with spectral analysis on the fluctuating velocity. Two-point cross-correlation and POD of the velocity fields are presented in Secs. 4 and 5. The results from the POD analysis are then used to facilitate vortex identification analysis, which is presented in Sec. 6. Finally, a summary of the work is presented in Sec. 7.

2 Experimental Facility and Time-Resolved-Stereoscopic Particle Image Velocimetry Experimental Setup

2.1 Experimental Facility.

The flow loop consisted of a 100 L storage tank, a centrifugal pump connected to a variable frequency drive to control the flow rate, a Coriolis flowmeter, and a circular acrylic test section with a 205 × 205 mm2 acrylic optical correction box attached. The total axial length of the test section was 1,400 mm, with the sphere placed at approximately 1,260 mm downstream of the test section inlet. The inner diameter of the test section was 140 mm. The stainless steel sphere, with diameter D =31.75 mm, was held in place using a 6.5 mm diameter aluminum rod mounted to a rigid aluminum honeycomb 350 mm upstream of the sphere. It is important that the support is upstream so that the flow does not reattach to the rod and distort the flow field in the wake. Based on the sphere diameter and test section diameter, approximately 5.2% of the total flow area was blocked by the sphere. Measurements were made for freestream velocities of V0=0.024, 0.035, and 0.047 m/s corresponding to Reynolds numbers of Re1=850,Re2=1,250, and Re3=1,700, respectively. The Reynolds number was calculated with the freestream velocity V0, the sphere diameter D, and the fluid viscosity as Re=V0D/ν The obtained statistical quantities and the coordinate system are normalized to the freestream velocity, V0, and the sphere diameter, D.

2.2 Time-Resolved-Stereoscopic Particle Image Velocimetry Experimental Setup.

Figure 1 shows the experimental setup for the two-dimensional three-component TR-SPIV measurements. The experimental setup consisted of two Phantom Miro high-speed CMOS cameras (Vision Research, Inc., Wayne, NJ), with 12 bit image depth and 1,280×800 pixels of resolution, and a 20 W continuous wave green laser (532 nm wavelength). The laser and cameras were mounted to 3-axis linear traverses to allow for fine control of their positions. The two cameras were both mounted on the same side of the laser sheet, viewing it at oblique angles. In order to obtain the three velocity components from these images, a calibration was performed to map the image plane to the object plane of the laser sheet. The calibration was performed using a LaVision 058-5 3D calibration plate (Ypsilanti, MI) with white markers at a spacing of 5 mm in the vertical and horizontal directions, and 1 mm in the out-of-plane direction. Using the images of the target, a mapping function was generated [41] to reconstruct the third velocity component. The laser beam was adjusted into a 2 mm thick sheet using a combined optics system. The cameras were each equipped with 100 mm Nikkor lenses. The seeding particles in the flow were hollow glass spheres with mean diameter of 10 μm and density of 1.1 g/cm3, and were injected into the test section with a syringe and mixed into the flow before the experiment. Such highly reflective seeding particles were illuminated by the laser sheet, and the reflected light from particles was captured by the camera to create an image [42]. A particle response to a constant flow acceleration [43,44] is expressed by
τp=dp2ρp18μ
(1)

where dp and ρp are the diameter and density of the seeding particle, respectively, and μ is the dynamic viscosity of water. Given the properties of seeding particles and the operating fluid, the particle response time was of the order of 7 × 10−6 s. The Stokes number, Stk, defined as the ratio between the particle response time τp and the flow characteristic time scale τf, was determined to vary between 9 × 10−6 and 5 × 10−6 corresponding to Re1 and Re3. According to previous studies, a value of Stokes number smaller than 10-1 will ensure the tracer particles follow the flow closely [4244].

Fig. 1
(a) Overview of the experimental facility, (b) top view (X–Z plane), and (c) front view (X–Y plane)
Fig. 1
(a) Overview of the experimental facility, (b) top view (X–Z plane), and (c) front view (X–Y plane)
Close modal

The origin of the coordinate system is set at the center of the sphere. The X-, Y-, and Z-coordinates, respectively, represent the horizontal (lateral), vertical (axial), and spanwise directions. The velocity components corresponding to the X-, Y-, and Z-directions are U, V, and W for the time-averaged velocities, and u,v, and w for the fluctuating velocities, respectively. For the experimental measurements, the cameras were operated at frame rates of 50, 75, and 100 frames per second corresponding to the Reynolds numbers of Re1=850,Re2=1,250, and Re3=1,700, respectively. For each Reynolds number, three experimental runs were performed, capturing 8,341 images of 768 × 768 pixels on each camera per run, which yielded a total of 25,023 images per Reynolds number used to compute the flow statistics. The images captured during the experiment were processed using advanced multipass, multigrid algorithms [45] implemented in an in-house PIV code that has been used in other studies by Nguyen et al. [4650]. The Robust Phase Correlation (RPC) algorithm [51] was used to perform the cross-correlation of the experimental images. The RPC algorithm reduces bias errors and peak locking effects when compared to the standard cross-correlation algorithm when analyzing flows with high shear or rotational motion [52]. The processing consisted of three passes with interrogation windows ranging from 64 × 64 pixels to 32 × 32 pixels. The window overlap ranged from 50% to 75%. The final vector fields had 99 × 109 vectors with 0.965 mm of spacing between each vector. A Gaussian peak fit was used to compute particle displacement to subpixel accuracy [44]. Validation was performed using a median filter [53], spurious vectors were removed and the blanks were filled via interpolation. In the measurements, the percentage of spurious vectors, computed as the number of vectors that failed to be validated in the final pass divided by the number of total vectors was less than 0.73%.

2.3 Convergence of the Time-Resolved-Stereoscopic Particle Image Velocimetry Measurements.

The convergence of the TR-SPIV results has been verified following the procedure laid out in Refs. [48] and [50]. The convergence function ϵN can be defined as the spatially averaged absolute difference between the statistical results computed using N instantaneous vector fields and the maximum number of vector fields, Nmax. This is expressed with the following formula, where M is the number of points in the field, and Si is a given statistical value
ϵN=1Mi=1N|(Si)N(Si)Nmax|
(2)

Bar graphs can be seen below in (Fig. 2) of ϵN computed for N = 8,000, 16,000, and 24,000 velocity snapshots. The value of N can be seen decreasing toward 0 as the number of samples approaches Nmax, and the majority of the statistical quantities are converged to within 2% by N = 8,000 samples. This shows that the data captured are enough to reach statistical convergence.

2.4 Estimated Uncertainties of the Time-Resolved-Stereoscopic Particle Image Velocimetry Measurements.

In this section, we present the estimated uncertainties of the TR-SPIV measurements. The uncertainty of the in-house PIV code has been evaluated by many studies [5457] to be approximately 0.1 pixels for two-dimensional two-component PIV measurements. The uncertainty quantification for three-component velocity measurements on a plane from SPIV measurements using the in-house codes was assessed in Ref. [58], in which the authors utilized the image matching [59] and correlation statistics [60] approaches. It was reported that the overall estimated uncertainty for instantaneous velocity from in-house codes based on the robust phase correlation algorithm in the TR-SPIV measurements was around 0.3 pixels, less than 5% of the mean axial velocity in the studied flow. The estimation of the total uncertainty of instantaneous velocity components is difficult due to the dependence on factors such as time interval length, tracer density, calibration, and processing algorithms [61,62].

To estimate the uncertainties of the computed SPIV statistical results, including the mean velocity, root-mean-square (RMS) fluctuating velocity, and Reynolds stress, the PIV uncertainty propagation was performed by following the approach of Sciacchitano and Wieneke [63]. The uncertainties of the mean velocities (eU, eV, and eW), RMS fluctuating velocities (euRMS,evRMS, and ewRMS), and Reynolds stress (euv) are expressed as [6365]
eU=σuNeff,eV=σvNeff,eW=σwNeff
(3)
euRMS=σU2(Neff1),evRMS=σv2(Neff1),ewRMS=σw2(Neff1)
(4)
euv=σuσv1+ρuv2Neff1
(5)

where σu, σv, and σw are the standard deviations of the measured velocity components, and ρuv is the cross-correlation coefficient between the measured velocity components. In these equations, Neff is the effective number of independent samples and can be estimated through the total time acquisition of the TR-SPIV measurements T and the integral time scale Tint as Neff = (T/(2Tint)). It is seen that the uncertainty of the statistical quantities depends mainly on the numbers of velocity vectors acquired from the PIV measurements [66,67].

This uncertainty propagation assumes that the errors in the measurements that contribute to the uncertainty of the statistical values are precision based rather than due to bias [67]. This allows the uncertainty of the statistical values to trend toward 0 as the number of samples, N, approaches infinity. Systematic errors that could lead to bias, such as camera focus and peak locking were accounted for during the experiment and in the PIV code, respectively, but cannot be directly quantified. Table 1 shows the uncertainty for the statistical values computed from the TR-SPIV vector fields. The quantities in Table 1 are given as a percentage of the freestream velocity, V0, and are the maximum values found for any point at each Reynolds number. The uncertainty was found to increase with an increase of Reynolds number. The uncertainties in the mean velocities were all less than 0.85%, and the uncertainties of the RMS fluctuating velocities and the Reynolds Stress were less than 0.59%.

Table 1

Estimated uncertainties, eRe1,eRe2, and eRe3, for the statistical results obtained from the TR-SPIV measurements corresponding to Re1, Re2, and Re3, respectively

UV0(%)VV0(%)WV0(%)uRMSV0(%)vRMSV0(%)wRMSV0(%)uvV02(%)
eRe10.16550.17730.34350.11700.12540.24290.0284
eRe20.31930.32960.74430.22570.23310.52630.0986
eRe30.21460.20930.84470.15170.14800.59730.0441
UV0(%)VV0(%)WV0(%)uRMSV0(%)vRMSV0(%)wRMSV0(%)uvV02(%)
eRe10.16550.17730.34350.11700.12540.24290.0284
eRe20.31930.32960.74430.22570.23310.52630.0986
eRe30.21460.20930.84470.15170.14800.59730.0441

The values are presented as a percentage of the freestream velocity V0.

3 Results From the Time-Resolved-Stereoscopic Particle Image Velocimetry Measurements

3.1 Statistical Results From the Time-Resolved-Stereoscopic Particle Image Velocimetry Measurements.

In this section, we discuss the first- and second-order statistical results from the TR-SPIV measurements for all three Reynolds numbers Re1, Re2, and Re3. The X-, Y-, and Z-coordinates are normalized by the sphere diameter D, while the mean velocity components, i.e., U, V, and W, are normalized by the freestream velocity, V0. The first- and second-order statistical results were computed from the full collection of instantaneous velocity fields.

Fig. 2
Assessment of the convergence of the statistical results at N = 8,000, 16,000, and 24,000 snapshots obtained from the TR-SPIV measurements in the wake of the sphere at Re1, Re2, and Re3
Fig. 2
Assessment of the convergence of the statistical results at N = 8,000, 16,000, and 24,000 snapshots obtained from the TR-SPIV measurements in the wake of the sphere at Re1, Re2, and Re3
Close modal

Figure 3 shows instantaneous in-plane velocity vector fields with the color contours of the out-of-plane velocity at Re3 = 1,700. The instantaneous velocity fields reveal complex flow structures, and a toroidal vortex system that, when viewed in a cross section, can be seen as a counter-rotating vortex pair in the wake of the sphere. The instantaneous fields also show the wake of the sphere oscillating as vortices are shed. The wake can be seen oscillating between X/D=0.75 and X/D=0.75. Here, we note that in Fig. 3 and subsequent figures, the data on the bottom-right side of the sphere are absent due to the shadow of the sphere when illuminated by the laser. We also note that the wake is slightly asymmetrical, and similar asymmetry has been found by other studies [20,26,68,69]. Another clear example can be seen in Ref. [70], where the streamlines crossing the midplane of the sphere are clearly asymmetric. It is likely that the slight asymmetry of the wake seen in Fig. 4 occurs due to instability caused by a Hopf bifurcation around Re = 87.5. Past this Reynolds number, the wake may become asymmetric due to one side of the helical structure becoming dominant over the other [30,71,72].

Fig. 3
Instantaneous in-plane velocity vectors, u/V0 and v/V0, and color contour of the out of plane velocity component, w/V0, at (a) t = 7.6 s, (b) t = 7.9 s for Re3. The vectors are downsampled for clarity. Results are normalized by V0.
Fig. 3
Instantaneous in-plane velocity vectors, u/V0 and v/V0, and color contour of the out of plane velocity component, w/V0, at (a) t = 7.6 s, (b) t = 7.9 s for Re3. The vectors are downsampled for clarity. Results are normalized by V0.
Close modal
Fig. 4
Color contour of out of plane velocity component, W/V0 overlaid with in-plane velocity streamlines for (a) Re1, (b) Re2, and (c) Re3. Recirculation length marked with an asterisk *. Results are normalized by V0.
Fig. 4
Color contour of out of plane velocity component, W/V0 overlaid with in-plane velocity streamlines for (a) Re1, (b) Re2, and (c) Re3. Recirculation length marked with an asterisk *. Results are normalized by V0.
Close modal

Figure 4 shows the normalized mean out-of-plane velocity color contour, along with streamlines and a line indicating the location of the profiles shown in Fig. 5. The velocity fields reveal very similar structures with increasing Reynolds number, but with the peaks increasing in magnitude. The mean in-plane vector fields, in combination with the streamlines, show the same two counter-rotating vortices as are seen from the instantaneous fields in the cross section of the toroidal vortex system in the wake of the sphere. It can be seen from the streamlines that as Reynolds number increases, the recirculation length decreases. The recirculation length was computed from the mean fields for each case to be 1.80D, 1.65D, and 1.52D, for Re1 to Re3, respectively. This confirms the trend displayed by the streamlines. The out-of-plane color contour reveals a swirling structure that is produced as the wake moves along all of the azimuthal directions.

Fig. 5
Comparisons of profiles of (a) U/V0, (b) uRMS′/V0, (c) V/V0, (d) vRMS′/V0, (e) W/V0, and (f) wRMS′/V0 at Y/D = 1.5 for Re1 = 850, and Re2 = 1,250, and Re3 = 1,700
Fig. 5
Comparisons of profiles of (a) U/V0, (b) uRMS′/V0, (c) V/V0, (d) vRMS′/V0, (e) W/V0, and (f) wRMS′/V0 at Y/D = 1.5 for Re1 = 850, and Re2 = 1,250, and Re3 = 1,700
Close modal

Figure 5 shows the statistical profiles at Y/D =1.5. The U velocity profile shows antisymmetric peaks aligned with the shear layer that had a slight decreasing trend in relative magnitude with an increase in Reynolds number due to the shortening of the wake. The uRMS profile shows a large peak inside the wake of the sphere due to the higher turbulent intensity inside the flow separation. The magnitude of the peak does not show a clear trend with a change in Reynolds number. The V velocity profile shows a negative peak in the center due to relatively small velocity inside the flow separation in the wake. The negative peak decreases in depth as Reynolds number increases due to the shrinking of the recirculation length. The vRMS profile shows two peaks due to the presence of the strong shear layer at the wake interface. The profiles of W and wRMS behaved similarly to the profiles of U and uRMS due to the symmetry of the geometry. The profiles of the RMS fluctuating velocities were the smallest along the edges where the velocities are close to that of the freestream. The dynamic range for the mean velocity measurements was [−0.0076, 0.0303] for Re1, [−0.0133, 0.0455] for Re2, and [−0.0194, 0.0599] for Re3. Likewise for the fluctuating velocities, the dynamic range was [0, 0.114] for Re1, [0, 0.238] for Re2, and [0, 0.0321] for Re3.

Figure 6 illustrates the normalized instantaneous in-plane velocity field and color contour of the normalized instantaneous spanwise vorticity corresponding to Re1, Re2, and Re3. In Fig. 6, spanwise vortices with various scales can be seen in the shear layer, detached from the sphere's surface. In this flow regime, two types of instability exist. One mode is associated with small-scale instability in the shear layer along the flow separation, and the other is the large-scale vortex shedding instability. The small-scale instability is evident from the progressively smaller scales as Reynolds number increases. These small scales arise from the presence of Kelvin–Helmholtz instabilities in the detached shear layer. To study this motion, we have followed the process proposed in Refs. [73] and [74] and identified the loci of maximum turbulence intensity. The turbulence intensity, Tuvw is defined as
Tuvw=u2+v2+w23
(6)

where u,v, and w are the fluctuating velocity components from Reynolds decomposition. Figure 7 illustrates the color contours of Tuvw and the locations its maximum intensity along the shear layer, along with a plot of the intensities of Tuvw along the left shear layer for each Reynolds number. This plot illustrates the transition process of the shear layer such as growth, peak, and decay of intensity along the flow direction. In each case, the shear grew to a maximum value before beginning to slowly decay. The growth rate and maximum value trended upward nonlinearly with Reynolds number. The maximum value occurred between 1.5D and 1.8D downstream of the sphere. The development of this flow consists of three main parts: (i) establishment of the shear layer from the leading edge of the sphere, (ii) onset of roll near the crest of the shear layers, and (iii) Kelvin–Helmholtz instabilities developing into vortex tubes downstream. The final part creates three-dimensional flapping motion of the shear layer and vortex pairs shown by the alternate signs of vorticity in Fig. 6.

Fig. 6
Normalized instantaneous in-plane velocity vectors, u/Um and v/Um, and color contours of normalized z-vorticity, ω·D/V0, for (a) Re1, (b) Re2, and (c) Re3
Fig. 6
Normalized instantaneous in-plane velocity vectors, u/Um and v/Um, and color contours of normalized z-vorticity, ω·D/V0, for (a) Re1, (b) Re2, and (c) Re3
Close modal
Fig. 7
Color contours of Tuvw calculated for (a) Re1, (b) Re2, and (c) Re3, and (d) line plots of 〈Tuvw〉max along the left shear layer obtained for the studied Reynolds numbers
Fig. 7
Color contours of Tuvw calculated for (a) Re1, (b) Re2, and (c) Re3, and (d) line plots of 〈Tuvw〉max along the left shear layer obtained for the studied Reynolds numbers
Close modal

3.2 Spectral Analysis on the Fluctuating Velocity Components.

The vortex shedding frequency from the sphere can be determined from the spectral analysis of the fluctuating velocity components inside the wake of the sphere [18]. Figure 8 shows the power spectrum densities (PSDs) from the spectral analysis on the streamwise fluctuating velocity component, v, the lateral component, u, and the spanwise fluctuating velocity component, w at the points P1, and P3 located at (X/D, Y/D) = (−0.5, 1.25), and (0.5, 1.25), respectively. The spectral analysis was performed using Welch's method [75] with a window size of 1,024 samples and window overlap of 256 samples. The PSDs revealed peak frequencies around a Strouhal number of 0.2 for both points, and at all studied Reynolds numbers. The PSDs computed using u and v, and the PSD computed using the spanwise component w at P1 all contain the above mentioned peak. The absence of the peak for w at P3 is likely due to the slight asymmetry of the wake.

Fig. 8
Spectral analysis of the fluctuating velocity u′, v′, and w′ at points P1(−0.5,1.25) and P3(0.5,1.25). PSDs of (a) u′, v′, and w′ at Re1, (b) u′, v′ and, and w′ at Re2, and (c) u′, v′, and w′ at Re3.
Fig. 8
Spectral analysis of the fluctuating velocity u′, v′, and w′ at points P1(−0.5,1.25) and P3(0.5,1.25). PSDs of (a) u′, v′, and w′ at Re1, (b) u′, v′ and, and w′ at Re2, and (c) u′, v′, and w′ at Re3.
Close modal
The −5/3 slope from Kolmogorov power law theory is overlaid above the PSDs, and shows a good agreement within the inertial range. Table 2 shows the slope of the PSDs and their corresponding 95% confidence intervals. The PSDs follow this slope until the point where dissipation becomes dominant [76]. The slight difference in the power-law slope for the spanwise component is likely due to the oblique angle of the cameras, which increases the practical size of the interrogation windows, resulting in a lower frequency response [77]. The Strouhal number was calculated for each case using the freestream velocity, V0, and the diameter of the sphere, D, and the peak frequency, f, as shown in the following equation:
St=fDV0
(7)
Table 2

Slope fit to PSDs for U, V, and W at P1 and P3 with the associated 95% confidence interval

PointRe1Re2Re3
P1:U1.6913±0.10121.6277±0.16671.6896±0.0878
P3:U1.6602±0.09931.6250±0.09241.6853±0.0790
P1:V1.6132±0.12161.6108±0.15781.6488±0.0962
P3:V1.6989±0.05231.7698±0.05071.7274±0.0651
P1:W1.6329±0.11051.5606±0.09371.5927±0.0535
P3:W1.5602±0.06971.5184±0.06611.5259±0.0971
PointRe1Re2Re3
P1:U1.6913±0.10121.6277±0.16671.6896±0.0878
P3:U1.6602±0.09931.6250±0.09241.6853±0.0790
P1:V1.6132±0.12161.6108±0.15781.6488±0.0962
P3:V1.6989±0.05231.7698±0.05071.7274±0.0651
P1:W1.6329±0.11051.5606±0.09371.5927±0.0535
P3:W1.5602±0.06971.5184±0.06611.5259±0.0971

A peak near Strouhal number of St = 0.2 can be found for flow over a sphere almost universally. These Strouhal number peaks represent the vortex shedding frequencies of the flow [46].

In the study of flow around square cylinders, the peak Strouhal number was found to be strongly affected with a blockage ratio of 1/4, while the effect was much less noticeable with blockage ratios of 1/6 and 1/8 [78]. The peak Strouhal number found in this study matched well with those found in the literature. Another study on the effect of blockage ratio on the wake of a square cylinder found a strong dependence of wake behavior past a blockage ratio of 0.4 [79]. The authors found that past this blockage ratio, the flow separated from the channel and caused the wake to swell laterally. Another experimental study on blockage effects in a wind tunnel found very little blockage effect for blockage ratios up to 10% [80].

4 Analysis of the Velocity–Velocity Two-Point Cross-Correlation

The two-point cross-correlation function can be useful for providing insight into the turbulent characteristics of the flow, such as the shapes, sizes, and roles of coherent structures [46,50,8183]. The two-point cross-correlation function is defined as
Ruu(xr,η,τ)=u(xr,t)×u(xr+η,t+τ)u2(xr,t)u2(xr+η,t+τ)
(8)
In this equation, · is the ensemble-average operator, u is the fluctuating velocity component, τ is a time delay, xr is a spatial reference location, and η is the spatial separation between the reference location and the measurement location. The value of the cross-correlation function ranges from zero to one, with lower values signifying dissimilarity in flow structures, and higher values signifying similarity between the flow structures. The values of the two point cross-correlation indicate the spatial extent of correlated regions [84], and allow the integral length scale to be calculated as
kLx=0Ruu(xr,ηk,0)dη
(9)

In the integral length scale equation, k is the direction along which the integral is computed, and x is the corresponding velocity component. This length scale measures the maximum correlation distance between the velocities at two points in the flow field [85]. The integral length scale in a given direction is representative of the characteristic length scale of the flow energy containing eddies along that direction [50,86], and can be considered to be the average of all turbulent length scales at that location [87]. The shapes and sizes of these eddies, along with the energy they contain, are important parameters to better understand the flow phenomena near the shear layer and inside of the wake behind the sphere.

The two-point cross-correlations, Ruu0,Rvv0, and Rww0, were computed at different points located near the shear layer and inside the recirculation bubble at the points P1 = (−0.5, 1.25), P2 = (0.0, 1.25), and P3 = (0.5, 1.25). The contours of the two-point cross-correlation shown in Fig. 9 contain elliptical shapes. Elliptical structures have been noticed in high shear flows before [88,89], and ellipses have been fit to the correlation map to compute integral length scales [90]. Following the same procedure, ellipses were fit at contour levels of 0.3 to 0.8. These ellipses were also plotted over the structures in Fig. 9. These ellipses were used to determine the direction along which the flow structure is aligned. The integral length scale was then computed along the major axis of the ellipse, rather than along the X, Y, or Z axes. The contours of Ruu0 display structures that were rounder than those revealed by Rvv0, and the angle of the major axis for these cases varied from nearly horizontal to nearly vertical. The structures in Ruu0 near the shear layer were usually elongated in the horizontal direction, while those inside the recirculation bubble were vertically elongated. The color maps of Rvv0 revealed very elongated elliptical structures both near the shear layer and inside the recirculation bubble. In all cases for Rvv0 the major axis of the ellipse fitted to the contour was nearly vertical. The contours of Rww0 revealed structures that were similar in shape to those revealed by the contours of Ruu0, but smaller in size. These structures were also rounder than those displayed in Rvv0, and all had approximately the same value of the angle for the fitted ellipses. The aspect ratios for the ellipses ranged from 0.327 to 2.559 for Ruu0, from 1.435 to 5.114 for Rvv0, and from 1.189 to 3.930 for Rww0.

Fig. 9
Color contours of two-point velocity–velocity cross-correlations of the fluctuating velocities, i.e., Ruu0 (left), Rvv0 (center), and Rww0 (right) computed at reference points P1(−0.5,1.25), P2(0,1.25), and P3(0.5,1.25). Ellipses are fitted to contour levels of 0.3–0.8.
Fig. 9
Color contours of two-point velocity–velocity cross-correlations of the fluctuating velocities, i.e., Ruu0 (left), Rvv0 (center), and Rww0 (right) computed at reference points P1(−0.5,1.25), P2(0,1.25), and P3(0.5,1.25). Ellipses are fitted to contour levels of 0.3–0.8.
Close modal

Profiles of the two-point cross-correlation were taken along the major axis of the fitted ellipses. The limits for integration in Eq. (9) were taken to be the points where the cross-correlation crossed 1/e 0.37 [48,82,91]. Figure 10 shows the obtained profiles of the two point cross-correlations, Ruu0,Rvv0, and Rww0 at Re3=1,700. The structures revealed by Ruu0 and Rww0 were significantly smaller than those from Rvv0, which can be seen from these profiles. The peaks in Ruu0 and Rww0 are much narrower and sharper than those of Rvv0. Table 3 contains the integral length scales computed at points P1, P2, and P3 located at (X/D, Y/D) = (−0.5, 1.25), (0.0, 1.25), and (0.5, 1.25), respectively, using u,v, and w. The integral length scales determined using the color contour ellipse fitting did not show a significant effect of the contour level, though the contour level for v showed a slightly more pronounced effect than those for u, and w. The length scales along the shear layer decreased with an increase in Reynolds number, likely due to the vortex stretching that occurs due to the convective instabilities in the shear layer [92]. These instabilities are governed by momentum thickness, which is a function of the Reynolds number. The length scales for v were larger here than inside the flow separation. The length scales inside the flow separation did not seem to follow any particular trend. This is due to the fact that the flow separation is governed mainly by the geometrical parameter. The length scales for u and w were larger inside the flow separation than in the shear layer. Further knowledge about the shape and size of these eddies can provide insight into flow mixing phenomena inside the wake.

Fig. 10
Profiles of the two-point velocity–velocity cross-correlations along the major axis of an ellipse fitted to different contour levels at Re3 = 1,700. (a) Ruu0, (b) Rvv0, and (c) Rww0 at P1 (–0.5, 1.25), (d) Ruu0, (e) Rvv0, and (f) Rww0 at P2 (0, 1.25), (g) Ruu0 and (h) Rvv0 and (i) Rww0 at P3 (0.5, 1.25).
Fig. 10
Profiles of the two-point velocity–velocity cross-correlations along the major axis of an ellipse fitted to different contour levels at Re3 = 1,700. (a) Ruu0, (b) Rvv0, and (c) Rww0 at P1 (–0.5, 1.25), (d) Ruu0, (e) Rvv0, and (f) Rww0 at P2 (0, 1.25), (g) Ruu0 and (h) Rvv0 and (i) Rww0 at P3 (0.5, 1.25).
Close modal
Table 3

Integral length scales estimated along the major axis of ellipse fits to two-point velocity–velocity cross-correlations Ruu0,Rvv0, and Rww0

Reynolds numberCoordinatesContour level
Re1=850(X/D,Y/D)0.40.50.60.7
Ruu0; Rvv0; Rww0P1=(0.5,1.25)0.18; 0.63; 0.140.18; 0.63; 0.140.18; 0.63; 0.140.18; 0.63; 0.14
Ruu0; Rvv0; Rww0P2=(0,1.25)0.26; 0.33; 0.170.26; 0.33; 0.170.26; 0.32; 0.160.26; 0.32; 0.16
Ruu0; Rvv0; Rww0P3=(0.5,1.25)0.25; 0.44; 0.060.25; 0.45; 0.060.25; 0.44; 0.060.24; 0.43; 0.06
Re2=1250(X/D,Y/D)0.40.50.60.7
Ruu0; Rvv0; Rww0P1=(0.5,1.25)0.14; 0.39; 0.130.14; 0.38; 0.130.14; 0.37; 0.130.14; 0.36; 0.13
Ruu0; Rvv0; Rww0P2=(0,1.25)0.22; 0.25; 0.120.22; 0.25; 0.12;0.22; 0.25; 0.120.22; 0.24; 0.12
Ruu0; Rvv0; Rww0P3=(0.5,1.25)0.15; 0.38; 0.070.15; 0.40; 0.070.15; 0.40; 0.070.15; 0.40; 0.07
Re3=1700(X/D,Y/D)0.40.50.60.7
Ruu0; Rvv0; Rww0P1=(0.5,1.25)0.15; 0.39; 0.130.15; 0.38; 0.130.15; 0.37; 0.130.15; 0.37; 0.12
Ruu0; Rvv0; Rww0P2=(0,1.25)0.25; 0.25; 0.100.26; 0.24; 0.100.25; 0.24; 0.100.25; 0.24; 0.10
Ruu0; Rvv0; Rww0P3=(0.5,1.25)0.13; 0.36; 0.070.13; 0.34; 0.070.13; 0.34; 0.070.13; 0.34; 0.07
Reynolds numberCoordinatesContour level
Re1=850(X/D,Y/D)0.40.50.60.7
Ruu0; Rvv0; Rww0P1=(0.5,1.25)0.18; 0.63; 0.140.18; 0.63; 0.140.18; 0.63; 0.140.18; 0.63; 0.14
Ruu0; Rvv0; Rww0P2=(0,1.25)0.26; 0.33; 0.170.26; 0.33; 0.170.26; 0.32; 0.160.26; 0.32; 0.16
Ruu0; Rvv0; Rww0P3=(0.5,1.25)0.25; 0.44; 0.060.25; 0.45; 0.060.25; 0.44; 0.060.24; 0.43; 0.06
Re2=1250(X/D,Y/D)0.40.50.60.7
Ruu0; Rvv0; Rww0P1=(0.5,1.25)0.14; 0.39; 0.130.14; 0.38; 0.130.14; 0.37; 0.130.14; 0.36; 0.13
Ruu0; Rvv0; Rww0P2=(0,1.25)0.22; 0.25; 0.120.22; 0.25; 0.12;0.22; 0.25; 0.120.22; 0.24; 0.12
Ruu0; Rvv0; Rww0P3=(0.5,1.25)0.15; 0.38; 0.070.15; 0.40; 0.070.15; 0.40; 0.070.15; 0.40; 0.07
Re3=1700(X/D,Y/D)0.40.50.60.7
Ruu0; Rvv0; Rww0P1=(0.5,1.25)0.15; 0.39; 0.130.15; 0.38; 0.130.15; 0.37; 0.130.15; 0.37; 0.12
Ruu0; Rvv0; Rww0P2=(0,1.25)0.25; 0.25; 0.100.26; 0.24; 0.100.25; 0.24; 0.100.25; 0.24; 0.10
Ruu0; Rvv0; Rww0P3=(0.5,1.25)0.13; 0.36; 0.070.13; 0.34; 0.070.13; 0.34; 0.070.13; 0.34; 0.07

5 Proper Orthogonal Decomposition Analysis on the Velocity Fields

Proper orthogonal decomposition is a tool introduced by Lumley [93] to identify large-scale energy containing features or coherent structures in turbulent flow. POD decomposes a set of spatiotemporal data into a set of spatial basis functions and corresponding temporal coefficients. The POD spatial modes display large-scale orthogonal flow structures, and the order of the POD spatial modes is ranked by the kinetic energy they contain.

A given velocity field, u(x,t), over a finite time interval (0<t<T) can be decomposed into a set of spatial modes and temporal coefficients as follows:
u(x,t)=k=1Nζk(t)ψ(x)
(10)
where N is the number of velocity field samples, ζk(t) are the POD temporal coefficients, and ψ(x) are the POD spatial basis functions. The POD basis functions, ψ(x) are the eigenvectors of the two-point correlation matrix. The two-point correlation is denoted as Cij in the discrete case, and is computed as
Cij=1Nu(x,ti)·u(x,tj)dx
(11)
We can then define αki as
αki=vikNm=1Nr=1NvmkvrkCmr
(12)
where vik is the ith element of the eigenvector vk corresponding to the eigenvalue λk of the two-point correlation matrix, Cij. These values can then be used to compute the basis functions and temporal coefficients as follows:
ψ(x)=k=1Nαkiu(x,ti)
(13)
ζk=u(x,t)·ψ(x)dx=Nk=1NαkiCij
(14)

Results from the POD analysis applied to the velocity fields for each Reynolds number are shown in Figs. 1117. Figure 11 shows the kinetic energy spectra and cumulative kinetic energy contained within the modes. The first POD mode followed a trend of decreasing with an increase in Reynolds number, and contained 95.68%, 93.15%, and 90.11%, of the total kinetic energy for Re1, Re2, and Re3, respectively. This trend indicates that the flow became more turbulent and more of the kinetic energy was distributed over structures with a smaller scale than the mean flow as the Reynolds number increased. The maximum amount of energy contained in the modes after the first was about 0.5% of total kinetic energy, which resulted in a quick convergence of the cumulative kinetic energy. The cumulative energy contained within the first 50 modes was 99.10%, 97.31%, and 95.42%, for the three Reynolds numbers considered in this study. Table 4 shows the kinetic energy contained in the first five modes for each Reynolds number.

Fig. 11
(a) Kinetic energy spectra of the POD modes for Re1, Re2, and Re3 and (b) cumulative energy of the POD modes for Re1, Re2, and Re3
Fig. 11
(a) Kinetic energy spectra of the POD modes for Re1, Re2, and Re3 and (b) cumulative energy of the POD modes for Re1, Re2, and Re3
Close modal
Fig. 12
Comparison between the first POD velocity mode ψ1 and the mean velocity field for (a) Re1, (b) Re2, and (c) Re3. Vectors are in plane velocity components and color contour is the out-of-plane velocity component.
Fig. 12
Comparison between the first POD velocity mode ψ1 and the mean velocity field for (a) Re1, (b) Re2, and (c) Re3. Vectors are in plane velocity components and color contour is the out-of-plane velocity component.
Close modal
Fig. 13
Low‐order POD velocity modes ψ2, ψ3, ψ4, and ψ8 for (a) Re1 and (b) Re3. Vectors are in plane POD mode velocity components and color contour is out-of-plane POD mode component.
Fig. 13
Low‐order POD velocity modes ψ2, ψ3, ψ4, and ψ8 for (a) Re1 and (b) Re3. Vectors are in plane POD mode velocity components and color contour is out-of-plane POD mode component.
Close modal
Fig. 14
POD temporal coefficients (a) ζ1 and ζ2 for Re1, (b) ζ3 and ζ4 for Re1, (c) ζ1 and ζ2 for Re2, (d) ζ3 and ζ4 for Re2, (e) ζ1 and ζ2 for Re3, and (f) ζ3 and ζ4 for Re3
Fig. 14
POD temporal coefficients (a) ζ1 and ζ2 for Re1, (b) ζ3 and ζ4 for Re1, (c) ζ1 and ζ2 for Re2, (d) ζ3 and ζ4 for Re2, (e) ζ1 and ζ2 for Re3, and (f) ζ3 and ζ4 for Re3
Close modal
Fig. 15
PSDs computed from the POD temporal coefficients ζ2 and ζ3 and ζ4 of POD analysis to the velocity vector field obtained at (a) Re1, (b) Re2, and (c) Re3
Fig. 15
PSDs computed from the POD temporal coefficients ζ2 and ζ3 and ζ4 of POD analysis to the velocity vector field obtained at (a) Re1, (b) Re2, and (c) Re3
Close modal
Fig. 16
Phase portraits of the POD temporal coefficients from the mode pairs ζ2 and ζ3 for Re1, Re2, and Re3, along with cross-correlation of the corresponding POD coefficients
Fig. 16
Phase portraits of the POD temporal coefficients from the mode pairs ζ2 and ζ3 for Re1, Re2, and Re3, along with cross-correlation of the corresponding POD coefficients
Close modal
Fig. 17
Velocity reconstruction using low-order POD modes. Comparisons between the (a) original instantaneous velocity snapshot, and those reconstructed using (b) 10 modes, (c) 25 modes, and (d) 50 modes. Vector fields show reconstructed in-plane velocity components and color contour shows out of plane velocity component.
Fig. 17
Velocity reconstruction using low-order POD modes. Comparisons between the (a) original instantaneous velocity snapshot, and those reconstructed using (b) 10 modes, (c) 25 modes, and (d) 50 modes. Vector fields show reconstructed in-plane velocity components and color contour shows out of plane velocity component.
Close modal
Table 4

Percentage of kinetic energy contained in the first five POD modes at each Reynolds number

ψ1ψ2ψ3ψ4ψ5
Re195.680.340.240.190.19
Re293.150.410.280.270.21
Re390.110.500.380.340.28
ψ1ψ2ψ3ψ4ψ5
Re195.680.340.240.190.19
Re293.150.410.280.270.21
Re390.110.500.380.340.28

Figure 12 shows a comparison of the mean velocity field with the first POD mode. It can be seen that the first POD mode for each case is approximately equivalent to the mean velocity field. Figure 13 illustrates the POD modes 2, 3, 4, and 8 for Reynolds numbers of Re1 and Re3. It can be seen in Fig. 13 that dominant flow structures revealed in the POD modes 2, 3, and 4 had large sizes, while those depicted in the higher POD mode 8 had relatively smaller sizes. Such smaller scale flow structures contained in the higher POD modes represent the unsteady chaotic nature of the flow. The rest of the POD modes, however, showed significantly different structures when comparing across the different Reynolds numbers. The size of the structures contained in the POD modes tended to reduce as the mode order increased and as Reynolds number increased.

Figure 14 shows the POD temporal coefficients 1–4 for all three Reynolds numbers. The POD temporal coefficients were rescaled by applying a z-score normalization, which modified the signal to have a mean of 0 and standard deviation of 1. The POD temporal coefficients did not reveal any obvious patterns, which suggests that the flow is a complex dynamical process. It can also be seen from Fig. 14 that the temporal coefficients fluctuate more heavily with an increase in Reynolds number. This occurs due to the strong increase in turbulence in the wake, and the transition between a laminar shear layer to a turbulent shear layer.

The PSDs computed from the POD temporal coefficients are shown in Fig. 15, and were computed with Welch's method similar to those computed for the fluctuating velocity. The −5/3 slope from Kolmogorov power law theory is overlaid above the PSDs from the POD temporal coefficients similar to those from the fluctuating velocity. The PSDs computed using the POD temporal coefficients also show very good agreement with the −5/3 slope. The PSDs of the POD temporal coefficients covered a large frequency range, which could suggest that there are multiple scales of turbulent structures contained within the flow. The frequency peaks in the PSDs computed using the POD temporal coefficients were very close to those revealed by the PSDs from the spectral analysis of the vertical fluctuating velocity, which corresponded to a St = 0.2.

Figure 16 depicts the trajectories of the POD temporal coefficients in the phase space, along with the cross-correlation of POD coefficients ζ2 and ζ3 at each studied Reynolds number. The coefficients ζ2 and ζ3 form a nearly circular trajectory in the phase space, which suggests that they dynamic pair of modes that coexist within the flow domain [94]. This dynamic mode pair is likely the result of a traveling structure within the flow, which is represented as a pair of modes that appear similar but shifted along the main advection direction [95]. The maximum magnitude of Rζ2ζ3 were 0.73 for Re1, 0.78 for Re2, and 0.73 for Re3, and occurred at 1.27 for Re1, 0.97 for Re2, and 1.23 for Re3, respectively. These high values of the cross-correlation further confirm the pairing of the POD modes, and can be used to estimate the time delay between them.

Figure 17 shows a low‐order reconstruction of an instantaneous velocity field at Re3 using the low‐order POD spatial modes and POD temporal coefficients. The original velocity field contains small scale vortex structures. The velocity field was reconstructed using 10, 25, and 50 modes, which captured 92.61%, 94.12%, and 95.42% of the total flow kinetic energy. When reconstructing the velocity fields, the flow reconstruction using ten modes depicted only the dominant large-scale structures contained in the flow. As the number of modes used to reconstruct the velocity fields increased to 25 or 50, the smaller scale flow structures seen in the original velocity field began to reveal themselves. Overall, as Reynolds number increased, the flow contained more small-scale flow structures, and thus higher numbers of modes were needed to accurately reconstruct the flow. These reconstructed velocity fields can also be used to facilitate the vortex identification analysis following the procedure laid out in Ref. [96].

Performing POD on the velocity fields has allowed us to extract the coherent structures contained within the flow in the wake of the sphere. POD analysis is beneficial to characterize the flow structures and the energy contained within them. A low‐order model of the flow can also be extracted from the POD analysis. The POD analysis on the velocity fields can provide information on the energy contained in the structures, but more direct characterization the size and shape of the coherent structures in the wake are also needed.

6 Identification and Distribution of Vortices in the Central Time-Resolved-Particle Image Velocimetry Measurement Plane

In this section, we utilize the POD analysis and its capability of flow reconstruction using low-order POD modes to investigate the characteristics of z-vortices within the central TR-SPIV measurement plane for Reynolds numbers Re1, Re2, and Re3. The statistical characteristics of the vortices, such as population densities, spatial distributions, and circulations, are described here. Many methods have been proposed to identify vortices within a flow field. She et al. [97] used DNS results from an isotropic turbulence field to identify vortices based on the magnitude of vorticity. This method was unable to distinguish the flow regions induced by vortex cores from shear motion. More robust methods have been proposed, including the Q criterion [98], Δ criterion [99], λ2 criterion [100], and λci criterion [101], which better separate vortex cores against shear motion [102]. In PIV measurements, the projection of a 3D vortex on 2D velocity fields must be extracted. Adrian et al. [103] introduced the 2D form of the λci criterion, which utilizes a 2D form of the 3D velocity gradient tensor. Carlier and Stanislas [104] utilized pattern recognition to identify vortices based on a reference eddy structure with Gaussian damping. Another method was proposed based on triple decomposition of the velocity fields [105], which was further enhanced by Maciel et al. [106]. This method utilizes the rigid-body rotation vorticity, which can be considered a local measure of vortex-related vorticity. This allows the swirling of vortices to be separated from pure shear motion. Further review of vortex identification methods can be found in the works of Kolář [105] and Chen et al. [102]. In this study, we combined POD analysis and the vortex identification algorithms previously discussed in Ref. [96] to identify the in-plane z-vortices from instantaneous velocity vector fields, i.e., in-plane u- and v-velocity components are considered. First, POD analysis was applied to the snapshots of instantaneous velocity vector fields from the TR-SPIV measurements; the POD spatial modes and POD temporal coefficients were acquired. Low-order POD modes and associated POD coefficients were then used to reconstruct the collection of instantaneous velocity fields to facilitate the separation of large-scale flow structures from the small-scale flow structures [42,96]. In the studies of Refs. [42,48], and [50], the authors demonstrated the capabilities of flow reconstruction using low-order POD modes such that the low-order reconstructed velocity and vorticity fields clearly depicted the large-scale coherent flow structures, i.e., energy-containing eddies, compared to the flow structures that appeared in the original instantaneous velocity snapshots. Using the reconstructed instantaneous velocity fields, centers and cores of the in-plane z-vortices are identified. For a given fixed point P in the measurement domain, the nondimensional scalar function Γ1 at P is defined as follows:
Γ1(P)=1NS(PMUM)·z||PM||·||UM||=1NSsin(θM)
(15)
where S is the 2D area surrounding P, point M is within S, z is the normal vector of the measurement region (||z||=1), N is the number of points M inside S, and θM represents the angle between the velocity vector UM and the radius vector PM. |Γ1| has a maximum value of 1 and reaches values ranging from 0.9 to 1 near the vortex center, which allows us to identify the center of vortical structures based on a threshold calculation [96]. The vortex boundary identification can be derived as follows:
Γ2(P)=1NS[PM(UMŨP)]·z||PM||·||UMŨP||
(16)

where the local convection velocity ŨP around point P is defined as ŨP=1SSUdS. Graftieaux et al. [96] discussed that Γ2 is a local function depending only on Ω, i.e., the rate of rotation of the tensor corresponding to the antisymmetrical part of the velocity gradient u, and μ, i.e., the eigenvalue of the symmetrical part of u. In the region where the flow is locally dominated by rotation, i.e., |Ωμ>1| and |Γ2>2Π|, can be chosen as a threshold [96] to define the vortex core region and to estimate the area and circulation of identified vortices.

The statistical information of the z-vortices was analyzed from a total of 25,023 instantaneous velocity vector fields corresponding to each Reynolds number of Re1, Re2, and Re3. Based on the suggestions of Nguyen et al. [50,86], the flow reconstructions were performed using the numbers of low-order POD modes that contained 99% of the total flow kinetic energy. Figure 18 showed the results obtained from the vortex identification in the wake region of the sphere. Figure 18(a) depicts the spatial distributions and sizes of identified z-vortices overplotted over the mean velocity vector fields for Re1, Re2, and Re3. In this figure, the color scale shows the vortex strength. In Fig. 18(b), histograms illustrate fluid areas covered by the z-vortices identified for Re1, Re2, and Re3. Table 5 summarized the statistical results of the z-vortices, such as the total number of detected vortices, NΩ, the vortex population, NΩ/Af (Af is the flow area of wake region downstream of the sphere), the normalized mean and standard deviation of the z-vortex area, i.e., μA/D2 and σA/D2, respectively, and the normalized mean and standard deviation of the z-vortex strength, i.e., μΓ/DV0 and σΓ/DV0, respectively. It is noted that the μΓ and σΓ of z-vortex strength were calculated considering the absolute strength values. Results from the vortex identification have shown that an increase of the Reynolds number increased the number of detected vortices, i.e., the greatest vortex population density was found at Re3, along with a reduction of average vortex area. In addition, the spatial extent of the vortex distribution was shortened with an increase of the Reynolds number. For instance, vortices were detected further downstream at approximately 2D for Re1, while they were identified at approximately 1.67D for Re3. This is because when the recirculation length is reduced, vortices generated from the sphere's trailing edge and shear layers are dynamically evolved within the wake region of the sphere. These observations are in accordance with the reduced recirculation lengths in the wake region when Reynolds numbers increased from Re1 to Re3. For the studied Reynolds numbers Re1, Re2, and Re3, the detected vortices varied with the ranges of minimum and maximum covered areas, i.e., 0.01D2 to 1.53D2, respectively. If the vortex area is considered as a circle with a radius of rvor, the identified z-vortices in the wake region of the sphere had mean radii of rvor/D = 0.41, 0.33, and 0.32 for Re1, Re2, and Re3, respectively. The normalized mean and standard deviation of the vortex strength were found to decrease when Reynolds numbers increased from Re1 to Re3, although the mean vortex strengths increased with an increase of Reynolds number.

Fig. 18
Statistical characteristics of the z-vortices in the central measurement plane for Reynolds numbers of Re1, Re2, and Re3. (a) Locations, sizes, and strengths (shown as color scale) of the identified vortices in the wake regions of the sphere and (b) histograms of the flow areas covered by the vortices.
Fig. 18
Statistical characteristics of the z-vortices in the central measurement plane for Reynolds numbers of Re1, Re2, and Re3. (a) Locations, sizes, and strengths (shown as color scale) of the identified vortices in the wake regions of the sphere and (b) histograms of the flow areas covered by the vortices.
Close modal
Table 5

Statistical results of z-vortices identified from the instantaneous velocity vector fields in the wake region of the sphere for Re1, Re2, and Re3

Re1Re2Re3
NΩ23,13126,07527,710
NΩAF4.595.175.49
μAD20.5210.3380.318
σAD20.3120.2720.193
μΓDV01.6191.3141.305
σΓDV00.8590.7770.657
Re1Re2Re3
NΩ23,13126,07527,710
NΩAF4.595.175.49
μAD20.5210.3380.318
σAD20.3120.2720.193
μΓDV01.6191.3141.305
σΓDV00.8590.7770.657

Results are shown here for the total counts of identified z-vortices, NΩ, the vortex population density, NΩ/AF, the normalized mean and standard deviation of the vortex area, i.e., μA/D2 and σA/D2, respectively, and the normalized mean and standard deviation of the vortex strength, i.e., μΓ/DV0 and σΓ/DV0, respectively.

7 Summary

The purpose of this study is to investigate the flow characteristics in the wake of a sphere at subcritical Reynolds numbers. TR-SPIV measurements were performed in the wake of a sphere at three Reynolds numbers between 850 and 1,700. The instantaneous velocity fields revealed small vortex structures and an oscillating recirculation region. The mean velocity fields showed the cross section of the toroidal vortex system in the wake, which presents itself as two counter-rotating vortices in the wake of the sphere. The length of the recirculation region was found to decrease with an increase in Reynolds number. The profiles of the mean velocities showed the same structures with peaks and valleys increasing in magnitude with increase in Reynolds number. The PSD plots from the spectral analysis of both the fluctuating velocity and the POD temporal coefficients contained peaks around St = 0.2, corresponding to the vortex shedding frequency that is commonly found in literature for flow over a sphere. The two-point cross-correlation analysis revealed elliptical structures within the flow. The turbulent length scales computed along the major axis of the elliptical structures revealed by the two-point cross-correlation analysis ranged between 0.12D and 0.63D. The computed integral length scales generally tended to decrease with an increase in Reynolds number, which shows a similar trend of smaller coherent structures being dominant in the wake. The POD analysis and two-point cross-correlation analysis applied to the TR-SPIV snapshots extracted the coherent flow structures that capture important characteristics related to the vortices in the wake the sphere. The POD analysis revealed the dominant coherent structures that occur in the wake of a sphere at these Reynolds numbers, and allowed the energy levels of these structures to be studied. The energy contained in the first POD mode for each Reynolds number considered in this study was 95.68%, 93.15%, and 90.11%, for Reynolds numbers 1–3, respectively. The first POD mode is considered approximately equal to the mean velocity field, so these values can be considered representative of the amount of kinetic energy contained within the mean velocity field. Modes 2 and 3 were found to be a traveling structure contained within a mode pair that were in phase. The decreasing trend of energy captured by higher order POD modes shows that the smaller scales within the wake contained more energy as Reynolds number increases. As Reynolds number increases, more energy content is pushed into smaller structures, and thus the higher order POD modes contain more energy. This leads to stronger momentum transfer in the shear layer, which causes the recirculation length to shrink. The ability of POD to produce low-order reconstructions of the velocity fields was also utilized to facilitate vortex identification analysis, which also revealed smaller, stronger structures in the wake with increasing Reynolds number, a shrinking wake, and an average vortex size of 0.41D for Re1, 0.33D for Re2, and 0.32D for Re3.

Acknowledgment

This research is financially supported by the U.S. Department of Energy, NEAMS project and under a Contract No. DE-NE0008983. The authors also thank the support from the U.S. Argonne National Laboratory.

Funding Data

  • Nuclear Energy University Program (No. DE-NE0008983; Funder ID: 10.13039/100000015).

Nomenclature

     
  • Af =

    flow area

  •  
  • Cij =

    two-point correlation matrix

  •  
  • D =

    sphere diameter

  •  
  • dp =

    seeding particle diameter

  •  
  • eRe =

    uncertainty for the statistics at a given Reynolds number

  •  
  • f =

    frequency

  •  
  • kLx =

    integral length scale

  •  
  • N =

    number of samples

  •  
  • NΩ =

    number of detected vortices

  •  
  • rvor =

    radius of equivalent circular vortex

  •  
  • Ruu0,Rvv0,Rww0 =

    velocity–velocity cross-correlation coefficients

  •  
  • Re =

    Reynolds number

  •  
  • St =

    Strouhal number

  •  
  • Stk =

    Stokes number

  •  
  • t =

    time

  •  
  • T =

    total measurement time

  •  
  • Tint =

    integral time scale

  •  
  • TUVW =

    time

  •  
  • U, V, W =

    mean velocities in the X, Y, and Z directions

  •  
  • u,v,w =

    fluctuating velocities in the X, Y, and Z directions

  •  
  • uRMS,vRMS,wRMS =

    root-mean-square fluctuating velocities in the X, Y, and Z directions

  •  
  • V0 =

    freestream velocity

  •  
  • X, Y, Z =

    horizontal, vertical and spanwise directions

  •  
  • Γi =

    vortex identification scalar functions

  •  
  • ϵ =

    convergence function

  •  
  • ζk(t) =

    POD temporal coefficient

  •  
  • η =

    separation distance

  •  
  • μA =

    mean vortex area

  •  
  • μΓ =

    mean vortex strength

  •  
  • ν =

    viscosity

  •  
  • ρp =

    seeding particle density

  •  
  • σA =

    vortex area standard deviation

  •  
  • σΓ =

    vortex strength standard deviation

  •  
  • τ =

    time delay

  •  
  • τf =

    characteristic time scale

  •  
  • τp =

    particle response time

  •  
  • ψk(x) =

    POD spatial basis function

References

1.
Okamoto
,
S.
, and
Sunabashiri
,
Y.
,
1992
, “
Vortex Shedding From a Circular Cylinder of Finite Length Placed on a Ground Plane
,”
ASME J. Fluids Eng.
,
114
(
4
), pp.
512
521
.10.1115/1.2910062
2.
Chesnakas
,
C.
, and
Simpson
,
R.
,
1996
, “
Measurements of the Turbulence Structure in the Vicinity of a 3-D Separation
,”
ASME J. Fluids Eng.
,
118
(
2
), pp.
268
275
.10.1115/1.2817373
3.
Manickam Sureshkumar
,
E.
,
Arjomandi
,
M.
,
Dally
,
B. B.
,
Cazzolato
,
B. S.
, and
Ghayesh
,
M. H.
,
2019
, “
Energy Concentration by Bluff Bodies—A Particle Image Velocimetry Investigation
,”
ASME J. Fluids Eng.
,
141
(
6
), p.
061105
.10.1115/1.4041886
4.
Khan
,
M. H.
,
Sharma
,
A.
, and
Agrawal
,
A.
,
2020
, “
Simulation of Flow Around a Cube at Moderate Reynolds Numbers Using the Lattice Boltzmann Method
,”
ASME J. Fluids Eng.
,
142
(
1
), p.
011301
.10.1115/1.4044821
5.
Sun
,
M.
, and
Marshall
,
J.
,
2000
, “
A Flow Visualization Study of Vortex Interaction With the Wake of a Sphere
,”
ASME J. Fluids Eng.
,
122
(
3
), pp.
560
568
.10.1115/1.1287505
6.
Choi
,
D.
, and
Park
,
H.
,
2018
, “
Flow Around in-Line Sphere Array at Moderate Reynolds Number
,”
Phys. Fluids
,
30
(
9
), p.
097104
.10.1063/1.5049734
7.
Taneda
,
S.
,
1956
, “
Experimental Investigation of the Wake Behind a Sphere at Low Reynolds Numbers
,”
J. Phys. Soc. Jpn.
,
11
(
10
), pp.
1104
1108
.10.1143/JPSJ.11.1104
8.
Nakamura
,
I.
,
1976
, “
Steady Wake Behind a Sphere
,”
Phys. Fluids
,
19
(
1
), pp.
5
8
.10.1063/1.861328
9.
Wu
,
J.-S.
, and
Faeth
,
G.
,
1993
, “
Sphere Wakes in Still Surroundings at Intermediate Reynolds Numbers
,”
AIAA J.
,
31
(
8
), pp.
1448
1455
.10.2514/3.11794
10.
Johnson
,
T.
, and
Patel
,
V.
,
1999
, “
Flow Past a Sphere Up to a Reynolds Number of 300
,”
J. Fluid Mech.
,
378
, pp.
19
70
.10.1017/S0022112098003206
11.
Tomboulides
,
A.
,
Orszag
,
S.
, and
Karniadakis
,
G.
,
1993
, “
Direct and Large-Eddy Simulations of Axisymmetric Wakes
,”
31st Aerospace Sciences Meeting
, Reno, NV, p.
546
.10.2514/6.1993-546
12.
Ploumhans
,
P.
,
Winckelmans
,
G.
,
Salmon
,
J. K.
,
Leonard
,
A.
, and
Warren
,
M.
,
2002
, “
Vortex Methods for Direct Numerical Simulation of Three-Dimensional Bluff Body Flows: Application to the Sphere at Re = 300, 500, and 1000
,”
J. Comput. Phys.
,
178
(
2
), pp.
427
463
.10.1006/jcph.2002.7035
13.
Tomboulides
,
A. G.
, and
Orszag
,
S. A.
,
2000
, “
Numerical Investigation of Transitional and Weak Turbulent Flow Past a Sphere
,”
J. Fluid Mech.
,
416
, pp.
45
73
.10.1017/S0022112000008880
14.
Constantinescu
,
G.
, and
Squires
,
K.
,
2004
, “
Numerical Investigations of Flow Over a Sphere in the Subcritical and Supercritical Regimes
,”
Phys. Fluids
,
16
(
5
), pp.
1449
1466
.10.1063/1.1688325
15.
Kiya
,
M.
,
Ishikawa
,
H.
, and
Sakamoto
,
H.
,
2001
, “
Near-Wake Instabilities and Vortex Structures of Three-Dimensional Bluff Bodies: A Review
,”
J. Wind Eng. Ind. Aerodyn.
,
89
(
14–15
), pp.
1219
1232
.10.1016/S0167-6105(01)00160-X
16.
Taneda
,
S.
,
1978
, “
Visual Observations of the Flow Past a Sphere at Reynolds Numbers Between 104 and 106
,”
J. Fluid Mech.
,
85
(
1
), pp.
187
192
.10.1017/S0022112078000580
17.
Jang
,
Y. I.
, and
Lee
,
S. J.
,
2008
, “
PIV Analysis of Near-Wake Behind a Sphere at a Subcritical Reynolds Number
,”
Exp. Fluids
,
44
(
6
), pp.
905
914
.10.1007/s00348-007-0448-2
18.
Sakamoto
,
H.
, and
Haniu
,
H.
,
1990
, “
A Study on Vortex Shedding From Spheres in a Uniform Flow
,”
ASME J. Fluids Eng.
,
112
(
4
), pp.
386
392
.10.1115/1.2909415
19.
Achenbach
,
E.
,
1972
, “
Experiments on the Flow Past Spheres at Very High Reynolds Numbers
,”
J. Fluid Mech.
,
54
(
3
), pp.
565
575
.10.1017/S0022112072000874
20.
Grandemange
,
M.
,
Gohlke
,
M.
, and
Cadot
,
O.
,
2014
, “
Statistical Axisymmetry of the Turbulent Sphere Wake
,”
Exp. Fluids
,
55
(
11
), p.
1838
.10.1007/s00348-014-1838-x
21.
Adrian
,
R. J.
,
1991
, “
Particle-Imaging Techniques for Experimental Fluid Mechanics
,”
Annu. Rev. Fluid Mech.
,
23
(
1
), pp.
261
304
.10.1146/annurev.fl.23.010191.001401
22.
Ortiz-Villafuerte
,
J.
, and
Hassan
,
Y. A.
,
2006
, “
Investigation of Microbubble Boundary Layer Using Particle Tracking Velocimetry
,”
ASME J. Fluids Eng.
,
128
(3), pp.
507
519
.10.1115/1.2174062
23.
Raffel
,
M.
,
Willert
,
C. E.
,
Scarano
,
F.
,
Kähler
,
C. J.
,
Wereley
,
S. T.
, and
Kompenhans
,
J.
,
2018
,
Particle Image Velocimetry: A Practical Guide
,
Springer
, New York.
24.
Van Doorne
,
C.
, and
Westerweel
,
J.
,
2007
, “
Measurement of Laminar, Transitional and Turbulent Pipe Flow Using Stereoscopic-PIV
,”
Exp. Fluids
,
42
(
2
), pp.
259
279
.10.1007/s00348-006-0235-5
25.
Prasad
,
A.
, and
Adrian
,
R.
,
1993
, “
Stereoscopic Particle Image Velocimetry Applied to Liquid Flows
,”
Exp. Fluids
,
15
(
1
), pp.
49
60
.10.1007/BF00195595
26.
Gentile
,
V.
,
Schrijer
,
F.
,
Van Oudheusden
,
B.
, and
Scarano
,
F.
,
2016
, “
Low-Frequency Behavior of the Turbulent Axisymmetric Near-Wake
,”
Phys. Fluids
,
28
(
6
), p.
065102
.10.1063/1.4953150
27.
Thacker
,
A.
,
Aubrun
,
S.
,
Leroy
,
A.
, and
Devinant
,
P.
,
2013
, “
Experimental Characterization of Flow Unsteadiness in the Centerline Plane of an Ahmed Body Rear Slant
,”
Exp. Fluids
,
54
(
3
), p.
1479
.10.1007/s00348-013-1479-5
28.
Shinneeb
,
A.-M.
,
Balachandar
,
R.
, and
Bugg
,
J.
,
2008
, “
Analysis of Coherent Structures in the Far-Field Region of an Axisymmetric Free Jet Identified Using Particle Image Velocimetry and Proper Orthogonal Decomposition
,”
ASME J. Fluids Eng.
,
130
(
1
), p.
011202
.10.1115/1.2813137
29.
Sinha
,
A.
,
Chauhan
,
R. O.
, and
Balasubramanian
,
S.
,
2018
, “
Characterization of a Superheated Water Jet Released Into Water Using Proper Orthogonal Decomposition Method
,”
ASME J. Fluids Eng.
,
140
(
8
), p.
081107
.10.1115/1.4039521
30.
Brücker
,
C.
,
2001
, “
Spatio-Temporal Reconstruction of Vortex Dynamics in Axisymmetric Wakes
,”
J. Fluids Struct.
,
15
(
3–4
), pp.
543
554
.10.1006/jfls.2000.0356
31.
Eshbal
,
L.
,
David
,
T.
,
Rinsky
,
V.
,
van Hout
,
R.
, and
Greenblatt
,
D.
,
2017
, “
Tomo-PIV Measurements of the Flow Field in the Wake of a Sphere
,” APS Division of Fluid Dynamics Meeting Abstracts. 2017.
32.
David
,
T.
,
Eshbal
,
L.
,
Rinsky
,
V.
, and
van Hout
,
R.
,
2020
, “
Flow Measurements in the Near Wake of a Smooth Sphere and One Mimicking a Pine Cone
,”
Phys. Rev. Fluids
,
5
(
7
), p.
074301
.10.1103/PhysRevFluids.5.074301
33.
Doh
,
D.
,
Hwang
,
T.
, and
Saga
,
T.
,
2004
, “
3D-PTV Measurements of the Wake of a Sphere
,”
Meas. Sci. Technol.
,
15
(
6
), pp.
1059
1066
.10.1088/0957-0233/15/6/004
34.
Eshbal
,
L.
,
Rinsky
,
V.
,
David
,
T.
,
Greenblatt
,
D.
, and
van Hout
,
R.
,
2019
, “
Measurement of Vortex Shedding in the Wake of a Sphere at Re = 465
,”
J. Fluid Mech.
,
870
, pp.
290
315
.10.1017/jfm.2019.250
35.
Mittal
,
R.
,
1999
, “
Planar Symmetry in the Unsteady Wake of a Sphere
,”
AIAA J.
,
37
(
3
), pp.
388
390
.10.2514/2.722
36.
Tyagi
,
H.
,
Liu
,
R.
,
Ting
,
D. S.-K.
, and
Johnston
,
C. R.
,
2006
, “
Measurement of Wake Properties of a Sphere in Freestream Turbulence
,”
Exp. Therm. Fluid Sci.
,
30
(
6
), pp.
587
604
.10.1016/j.expthermflusci.2005.12.004
37.
Rodríguez Pérez
,
I. M.
,
Lehmkuhl Barba
,
O.
,
Borrell Pol
,
R.
,
Oliva Llena
,
A.
, and
Pérez Segarra
,
C. D.
,
2010
, “
Direct Numerical Simulation of Turbulent Wakes: Flow Past a Sphere at Re = 5000
,”
Fifth European Conference on Computational Fluid Dynamics
, Lisbon, Portugal, June 14–17, p. 04134.https://www.researchgate.net/publication/49242139_Direct_numerical_simulation_of_turbulent_wakes_flow_past_a_sphere_at_Re5000
38.
Rodriguez
,
I.
,
Borell
,
R.
,
Lehmkuhl
,
O.
,
Segarra
,
C. D. P.
, and
Oliva
,
A.
,
2011
, “
Direct Numerical Simulation of the Flow Over a Sphere at Re = 3700
,”
J. Fluid Mech.
,
679
, pp.
263
287
.10.1017/jfm.2011.136
39.
Chongsiripinyo
,
K.
,
Pal
,
A.
, and
Sarkar
,
S.
,
2017
, “
On the Vortex Dynamics of Flow Past a Sphere at Re = 3700 in a Uniformly Stratified Fluid
,”
Phys. Fluids
,
29
(
2
), p.
020704
.10.1063/1.4974503
40.
Hassanzadeh
,
R.
,
Sahin
,
B.
, and
Ozgoren
,
M.
,
2011
, “
Numerical Investigation of Flow Structures Around a Sphere
,”
Int. J. Comput. Fluid Dyn.
,
25
(
10
), pp.
535
545
.10.1080/10618562.2011.633489
41.
Soloff
,
S. M.
,
Adrian
,
R. J.
, and
Liu
,
Z.-C.
,
1997
, “
Distortion Compensation for Generalized Stereoscopic Particle Image Velocimetry
,”
Meas. Sci. Technol.
,
8
(
12
), pp.
1441
1454
.10.1088/0957-0233/8/12/008
42.
Nguyen
,
T.
,
Vaghetto
,
R.
, and
Hassan
,
Y.
,
2020
, “
Experimental Investigation of Turbulent Wake Flows in a Helically Wrapped Rod Bundle in Presence of Localized Blockages
,”
Phys. Fluids
,
32
(
7
), p.
075113
.10.1063/5.0008589
43.
Samimy
,
M.
, and
Lele
,
S.
,
1991
, “
Motion of Particles With Inertia in a Compressible Free Shear Layer
,”
Phys. Fluids A
,
3
(
8
), pp.
1915
1923
.10.1063/1.857921
44.
Raffel
,
M.
,
Willert
,
C. E.
,
Wereley
,
S.
, and
Kompenhans
,
J.
,
2013
,
Particle Image Velocimetry: A Practical Guide
,
Springer
, New York.
45.
Eckstein
,
A.
, and
Vlachos
,
P. P.
,
2009
, “
Digital Particle Image Velocimetry (DPIV) Robust Phase Correlation
,”
Meas. Sci. Technol.
,
20
(
5
), p.
055401
.10.1088/0957-0233/20/5/055401
46.
Nguyen
,
T.
, and
Hassan
,
Y.
,
2017
, “
Stereoscopic Particle Image Velocimetry Measurements of Flow in a Rod Bundle With a Spacer Grid and Mixing Vanes at a Low Reynolds Number
,”
Int. J. Heat Fluid Flow
,
67
, pp.
202
219
.10.1016/j.ijheatfluidflow.2017.08.011
47.
Nguyen
,
T.
,
Goth
,
N.
,
Jones
,
P.
,
Lee
,
S.
,
Vaghetto
,
R.
, and
Hassan
,
Y.
,
2017
, “
PIV Measurements of Turbulent Flows in a 61-Pin Wire-Wrapped Hexagonal Fuel Bundle
,”
Int. J. Heat Fluid Flow
,
65
, pp.
47
59
.10.1016/j.ijheatfluidflow.2017.03.007
48.
Nguyen
,
T.
,
Kappes
,
E.
,
King
,
S.
,
Hassan
,
Y.
, and
Ugaz
,
V.
,
2018
, “
Time-Resolved PIV Measurements in a Low-Aspect Ratio Facility of Randomly Packed Spheres and Flow Analysis Using Modal Decomposition
,”
Exp. Fluids
,
59
(
8
), p.
127
.10.1007/s00348-018-2583-3
49.
Nguyen
,
T.
,
Goth
,
N.
,
Jones
,
P.
,
Vaghetto
,
R.
, and
Hassan
,
Y.
,
2018
, “
Stereoscopic PIV Measurements of Near-Wall Flow in a Tightly Packed Rod Bundle With Wire Spacers
,”
Exp. Therm. Fluid Sci.
,
92
, pp.
420
435
.10.1016/j.expthermflusci.2017.11.009
50.
Nguyen
,
T.
,
Muyshondt
,
R.
,
Hassan
,
Y.
, and
Anand
,
N.
,
2019
, “
Experimental Investigation of Cross Flow Mixing in a Randomly Packed Bed and Streamwise Vortex Characteristics Using Particle Image Velocimetry and Proper Orthogonal Decomposition Analysis
,”
Phys. Fluids
,
31
(
2
), p.
025101
.10.1063/1.5079303
51.
Eckstein
,
A. C.
,
Charonko
,
J.
, and
Vlachos
,
P.
,
2008
, “
Phase Correlation Processing for DPIV Measurements
,”
Exp. Fluids
,
45
(
3
), pp.
485
500
.10.1007/s00348-008-0492-6
52.
Guo
,
T.
,
Rau
,
M. J.
,
Vlachos
,
P. P.
, and
Garimella
,
S. V.
,
2017
, “
Axisymmetric Wall Jet Development in Confined Jet Impingement
,”
Phys. Fluids
,
29
(
2
), p.
025102
.10.1063/1.4975394
53.
Westerweel
,
J.
,
1994
, “
Efficient Detection of Spurious Vectors in Particle Image Velocimetry Data
,”
Exp. Fluids
,
16
(
3–4
), pp.
236
247
.10.1007/BF00206543
54.
Timmins
,
B. H.
,
Wilson
,
B. W.
,
Smith
,
B. L.
, and
Vlachos
,
P. P.
,
2012
, “
A Method for Automatic Estimation of Instantaneous Local Uncertainty in Particle Image Velocimetry Measurements
,”
Exp. Fluids
,
53
(
4
), pp.
1133
1147
.10.1007/s00348-012-1341-1
55.
Wilson
,
B. M.
, and
Smith
,
B. L.
,
2013
, “
Uncertainty on PIV Mean and Fluctuating Velocity Due to Bias and Random Errors
,”
Meas. Sci. Technol.
,
24
(
3
), p.
035302
.10.1088/0957-0233/24/3/035302
56.
Charonko
,
J. J.
, and
Vlachos
,
P. P.
,
2013
, “
Estimation of Uncertainty Bounds for Individual Particle Image Velocimetry Measurements From Cross-Correlation Peak Ratio
,”
Meas. Sci. Technol.
,
24
(
6
), p.
065301
.10.1088/0957-0233/24/6/065301
57.
Boomsma
,
A.
,
Bhattacharya
,
S.
,
Troolin
,
D.
,
Pothos
,
S.
, and
Vlachos
,
P.
,
2016
, “
A Comparative Experimental Evaluation of Uncertainty Estimation Methods for Two-Component PIV
,”
Meas. Sci. Technol.
,
27
(
9
), p.
094006
.10.1088/0957-0233/27/9/094006
58.
Bhattacharya
,
S.
,
Charonko
,
J. J.
, and
Vlachos
,
P. P.
,
2017
, “
Stereo-Particle Image Velocimetry Uncertainty Quantification
,”
Meas. Sci. Technol.
,
28
(
1
), p.
015301
.10.1088/1361-6501/28/1/015301
59.
Sciacchitano
,
A.
,
Wieneke
,
B.
, and
Scarano
,
F.
,
2013
, “
PIV Uncertainty Quantification by Image Matching
,”
Meas. Sci. Technol.
,
24
(
4
), p.
045302
.10.1088/0957-0233/24/4/045302
60.
Wieneke
,
B.
,
2015
, “
PIV Uncertainty Quantification From Correlation Statistics
,”
Meas. Sci. Technol.
,
26
(
7
), p.
074002
.10.1088/0957-0233/26/7/074002
61.
Sciacchitano
,
A.
,
Neal
,
D. R.
,
Smith
,
B. L.
,
Warner
,
S. O.
,
Vlachos
,
P. P.
,
Wieneke
,
B.
, and
Scarano
,
F.
,
2015
, “
Collaborative Framework for PIV Uncertainty Quantification: Comparative Assessment of Methods
,”
Meas. Sci. Technol.
,
26
(
7
), p.
074004
.10.1088/0957-0233/26/7/074004
62.
Neal
,
D. R.
,
Sciacchitano
,
A.
,
Smith
,
B. L.
, and
Scarano
,
F.
,
2015
, “
Collaborative Framework for PIV Uncertainty Quantification: The Experimental Database
,”
Meas. Sci. Technol.
,
26
(
7
), p.
074003
.10.1088/0957-0233/26/7/074003
63.
Sciacchitano
,
A.
, and
Wieneke
,
B.
,
2016
, “
PIV Uncertainty Propagation
,”
Meas. Sci. Technol.
,
27
(
8
), p.
084006
.10.1088/0957-0233/27/8/084006
64.
Benedict
,
L.
, and
Gould
,
R.
,
1996
, “
Towards Better Uncertainty Estimates for Turbulence Statistics
,”
Exp. Fluids
,
22
(
2
), pp.
129
136
.10.1007/s003480050030
65.
Bendat
,
J. S.
, and
Piersol
,
A. G.
,
2011
,
Random Data: Analysis and Measurement Procedures
, Vol.
729
,
Wiley
, Hoboken, NJ.
66.
Duan
,
Y.
,
Zhang
,
P.
,
Zhong
,
Q.
,
Zhu
,
D.
, and
Li
,
D.
,
2020
, “
Characteristics of Wall-Attached Motions in Open Channel Flows
,”
Phys. Fluids
,
32
(
5
), p.
055110
.10.1063/5.0004323
67.
Lander
,
D.
,
Moore
,
D.
,
Letchford
,
C.
, and
Amitay
,
M.
,
2018
, “
Scaling of Square-Prism Shear Layers
,”
J. Fluid Mech.
,
849
, pp.
1096
1119
.10.1017/jfm.2018.443
68.
Oxlade
,
A. R.
,
Morrison
,
J. F.
,
Qubain
,
A.
, and
Rigas
,
G.
,
2015
, “
High-Frequency Forcing of a Turbulent Axisymmetric Wake
,”
J. Fluid Mech.
, 770, pp.
305
318
.10.1017/jfm.2015.153
69.
Richter
,
A.
, and
Nikrityuk
,
P. A.
,
2012
, “
Drag Forces and Heat Transfer Coefficients for Spherical, Cuboidal and Ellipsoidal Particles in Cross Flow at Sub-Critical Reynolds Numbers
,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
1343
1354
.10.1016/j.ijheatmasstransfer.2011.09.005
70.
Yin
,
G.
, and
Ong
,
M. C.
,
2020
, “
On the Wake Flow Behind a Sphere in a Pipe Flow at Low Reynolds Numbers
,”
Phys. Fluids
,
32
(
10
), p.
103605
.10.1063/5.0017349
71.
Kim
,
I.
, and
Pearlstein
,
A. J.
,
1990
, “
Stability of the Flow Past a Sphere
,”
J. Fluid Mech.
,
211
, pp.
73
93
.10.1017/S0022112090001501
72.
Natarajan
,
R.
, and
Acrivos
,
A.
,
1993
, “
The Instability of the Steady Flow Past Spheres and Disks
,”
J. Fluid Mech.
,
254
, pp.
323
344
.10.1017/S0022112093002150
73.
Sasaki
,
K.
, and
Kiya
,
M.
,
1991
, “
Three-Dimensional Vortex Structure in a Leading-Edge Separation Bubble at Moderate Reynolds Numbers
,”
ASME J. Fluids Eng.
,
113
(3), pp.
405
410
.10.1115/1.2909510
74.
Stevenson
,
J.
,
Nolan
,
K.
, and
Walsh
,
E.
,
2016
, “
Particle Image Velocimetry Measurements of Induced Separation at the Leading Edge of a Plate
,”
J. Fluid Mech.
,
804
, pp.
278
297
.10.1017/jfm.2016.532
75.
Welch
,
P.
,
1967
, “
The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging Over Short, Modified Periodograms
,”
IEEE Trans. Audio Electroacoust.
,
15
(
2
), pp.
70
73
.10.1109/TAU.1967.1161901
76.
Trias
,
F. X.
,
Gorobets
,
A.
, and
Oliva
,
A.
,
2015
, “
Turbulent Flow Around a Square Cylinder at Reynolds Number 22,000: A DNS Study
,”
Comput. Fluids
,
123
, pp.
87
98
.10.1016/j.compfluid.2015.09.013
77.
Beresh
,
S. J.
,
2018
, “
Denoising 400-kHz “Postage-Stamp PIV” Using Uncertainty Quantification
,”
AIAA
Paper No. 2034.10.2514/6.2018-2034
78.
Turki
,
S.
,
Abbassi
,
H.
, and
Nasrallah
,
S. B.
,
2003
, “
Effect of the Blockage Ratio on the Flow in a Channel With a Built-in Square Cylinder
,”
Comput. Mech.
,
33
(
1
), pp.
22
29
.10.1007/s00466-003-0496-2
79.
Patil
,
P. P.
, and
Tiwari
,
S.
,
2008
, “
Effect of Blockage Ratio on Wake Transition for Flow Past Square Cylinder
,”
Fluid Dyn. Res.
,
40
(
11–12
), pp.
753
778
.10.1016/j.fluiddyn.2008.04.001
80.
Choi
,
C.-K.
, and
Kwon
,
D.-K.
,
1998
, “
Wind Tunnel Blockage Effects on Aerodynamic Behavior of Bluff Body
,”
Wind Struct. Int. J.
,
1
(
4
), pp.
351
364
.10.12989/was.1998.1.4.351
81.
Spalart
,
P. R.
,
1988
, “
Contributions of Numerical Simulation Data Bases to the Physics, Modeling, and Measurement of Turbulence
,”
Adv. Turbul.
,
11
11
.
82.
Romano
,
G. P.
,
1995
, “
Analysis of Two-Point Velocity Measurements in Near-Wall Flows
,”
Exp. Fluids
,
20
(
2
), pp.
68
83
.10.1007/BF01061584
83.
Nguyen
,
T.
,
Maher
,
B.
, and
Hassan
,
Y.
,
2020
, “
Flowfield Characteristics of a Supersonic Jet Impinging on an Inclined Surface
,”
AIAA J.
,
58
(
3
), pp.
1240
1254
.10.2514/1.J058897
84.
Kerhervé
,
F.
, and
Fitzpatrick
,
J.
,
2011
, “
Measurement and Analysis of the Turbulent Length Scales in Jet Flows
,”
Exp. Fluids
,
50
(
3
), pp.
637
651
.10.1007/s00348-010-0957-2
85.
O'Neill
,
P. L.
,
Nicolaides
,
D.
,
Honnery
,
D.
, and
Soria
,
J.
,
2004
, “
Autocorrelation Functions and the Determination of Integral Length With Reference to Experimental and Numerical Data
,”
15th Australasian Fluid Mechanics Conference
, Vol.
1
, Dec.,
University of Sydney
,
Sydney, NSW, Australia
, pp.
1
4
.
86.
Nguyen
,
T.
,
White
,
L.
,
Vaghetto
,
R.
, and
Hassan
,
Y.
,
2019
, “
Turbulent Flow and Vortex Characteristics in a Blocked Subchannel of a Helically Wrapped Rod Bundle
,”
Exp. Fluids
,
60
(
8
), p.
129
.10.1007/s00348-019-2778-2
87.
Aleiferis
,
P.
,
Behringer
,
M.
, and
Malcolm
,
J.
,
2017
, “
Integral Length Scales and Time Scales of Turbulence in an Optical Spark-Ignition Engine
,”
Flow, Turbul. Combust.
,
98
(
2
), pp.
523
577
.10.1007/s10494-016-9775-9
88.
Mahadevan
,
R.
, and
Loth
,
E.
,
1994
, “
High-Speed Cinematography of Compressible Mixing Layers
,”
Exp. Fluids
,
17
(
3
), pp.
179
189
.10.1007/BF00190915
89.
Fleury
,
V.
,
Bailly
,
C.
,
Jondeau
,
E.
,
Michard
,
M.
, and
Juvé
,
D.
,
2008
, “
Space-Time Correlations in Two Subsonic Jets Using Dual Particle Image Velocimetry Measurements
,”
AIAA J.
,
46
(
10
), pp.
2498
2509
.10.2514/1.35561
90.
André
,
B.
,
Castelain
,
T.
, and
Bailly
,
C.
,
2014
, “
Investigation of the Mixing Layer of Underexpanded Supersonic Jets by Particle Image Velocimetry
,”
Int. J. Heat Fluid Flow
,
50
, pp.
188
200
.10.1016/j.ijheatfluidflow.2014.08.004
91.
Falchi
,
M.
, and
Romano
,
G. P.
,
2009
, “
Evaluation of the Performance of High-Speed PIV Compared to Standard PIV in a Turbulent Jet
,”
Exp. Fluids
,
47
(
3
), pp.
509
526
.10.1007/s00348-009-0682-x
92.
Rockwell
,
D. O.
,
1977
, “
Vortex Stretching Due to Shear Layer Instability
,”
ASME J. Fluids Eng.
,
99
(
1
), pp.
240
243
.10.1115/1.3448529
93.
Lumley
,
J. L.
,
1967
, “
The Structure of Inhomogeneous Turbulent Flows
,”
Atmos. Turbul. Radio Wave Propag.
,
7
(
4
), pp.
166
178
.
94.
Riches
,
G.
,
Martinuzzi
,
R.
, and
Morton
,
C.
,
2018
, “
Proper Orthogonal Decomposition Analysis of a Circular Cylinder Undergoing Vortex-Induced Vibrations
,”
Phy. Fluids
,
30
(
10
), p.
105103
10.1063/1.5046090.
95.
Taira
,
K.
,
Brunton
,
S. L.
,
Dawson
,
S. T. M.
,
Rowley
,
C. W.
,
Colonius
,
T.
,
Mckeon
,
B. J.
,
Schmidt
,
O. T.
,
Gordeyev
,
S.
,
Theofilis
,
V.
, and
Ukeiley
,
L. S.
,
2017
, “
Modal Analysis of Fluid Flows: An Overview
,”
AIAA J.
,
55
(
12
), pp.
4013
4041
.10.2514/1.J056060
96.
Graftieaux
,
L.
,
Michard
,
M.
, and
Grosjean
,
N.
,
2001
, “
Combining PIV, POD and Vortex Identification Algorithms for the Study of Unsteady Turbulent Swirling Flows
,”
Meas. Sci. Technol.
,
12
(
9
), pp.
1422
1429
.10.1088/0957-0233/12/9/307
97.
She
,
Z.-S.
,
Jackson
,
E.
, and
Orszag
,
S. A.
,
1990
, “
Intermittent Vortex Structures in Homogeneous Isotropic Turbulence
,”
Nature
,
344
(
6263
), pp.
226
228
.10.1038/344226a0
98.
Hunt
,
J. C.
,
Wray
,
A. A.
, and
Moin
,
P.
,
1988
, “
Eddies, Streams, and Convergence Zones in Turbulent Flows
,”
Proceedings of the Summer Program of the Center for Turbulence Research
, NASA Ames/Stanford University, Washington, DC.
99.
Chong
,
M. S.
,
Perry
,
A. E.
, and
Cantwell
,
B. J.
,
1990
, “
A General Classification of Three-Dimensional Flow Fields
,”
Phys. Fluids A
,
2
(
5
), pp.
765
777
.10.1063/1.857730
100.
Jeong
,
J.
, and
Hussain
,
F.
,
1995
, “
On the Identification of a Vortex
,”
J. Fluid Mech.
,
285
(
1
), pp.
69
94
.10.1017/S0022112095000462
101.
Zhou
,
J.
,
Adrian
,
R. J.
,
Balachandar
,
S.
, and
Kendall
,
T.
,
1999
, “
Mechanisms for Generating Coherent Packets of Hairpin Vortices in Channel Flow
,”
J. Fluid Mech.
,
387
, pp.
353
396
.10.1017/S002211209900467X
102.
Chen
,
Q.
,
Zhong
,
Q.
,
Qi
,
M.
, and
Wang
,
X.
,
2015
, “
Comparison of Vortex Identification Criteria for Planar Velocity Fields in Wall Turbulence
,”
Phys. Fluids
,
27
(
8
), p.
085101
.10.1063/1.4927647
103.
Adrian
,
R.
,
Christensen
,
K.
, and
Liu
,
Z.-C.
,
2000
, “
Analysis and Interpretation of Instantaneous Turbulent Velocity Fields
,”
Exp. Fluids
,
29
(
3
), pp.
275
290
.10.1007/s003489900087
104.
Carlier
,
J.
, and
Stanislas
,
M.
,
2005
, “
Experimental Study of Eddy Structures in a Turbulent Boundary Layer Using Particle Image Velocimetry
,”
J. Fluid Mech.
,
535
, pp.
143
188
.10.1017/S0022112005004751
105.
Kolář
,
V.
,
2007
, “
Vortex Identification: New Requirements and Limitations
,”
Int. J. Heat Fluid Flow
,
28
(
4
), pp.
638
652
.10.1016/j.ijheatfluidflow.2007.03.004
106.
Maciel
,
Y.
,
Robitaille
,
M.
, and
Rahgozar
,
S.
,
2012
, “
A Method for Characterizing Cross-Sections of Vortices in Turbulent Flows
,”
Int. J. Heat Fluid Flow
,
37
, pp.
177
188
.10.1016/j.ijheatfluidflow.2012.06.005