The flow fields for swirlers with and without a shroud were measured using a twocomponent laser-Doppler velocimeter (LDV) system. The primary goal of this study is to investigate the effect of shrouds on swirler flow fields, in order to provide useful design information for the manufacture of gas turbine fuel nozzles, and to supply benchmark data for comparison with numerical predictions. As a result of the measurements, the radial distributions of three mean velocity components, turbulence intensity, and shear stresses were obtained at five locations (x/d = 0.1, 1, 2, 4, and 8) along the axis of the swirlers. The LDV system was operated in the 20 deg off-axis forward scatter mode with beam expanders and Bragg cell frequency shifting on both components. The flow was seeded by 1 μm mean diameter atomized particles of glycerol and water (50/50) mixture. Comparison of flow with and without the shroud showed that the jet diameter was much smaller, and the flow deceleration in the downstream direction was faster, due to the influence of the shroud, at the same supply pressure (750 mm H2O). As a result of the significant reduction in the swirl number due to the addition of the shroud, the recirculation zone disappeared. In addition to its influence on recirculation, the shroud caused a radially inward shift of the maximum mean and turbulence parameters at all axial locations. The anisotropy of turbulence increased as compared to the values for the swirler without the shroud.

This content is only available via PDF.
You do not currently have access to this content.