Polydisperse sprays in complex three-dimensional flow systems are important in many technical applications. Numerical descriptions of sprays are used to achieve a fast and accurate prediction of complex two-phase flows. The Eulerian and Lagrangian methods are two essentially different approaches for the modeling of disperse two-phase flows. Both methods have been implemented into the same computational fluid dynamics package which is based on a three-dimensional body-fitted finite volume method. Considering sprays represented by a small number of droplet starting conditions, the Eulerian method is clearly superior in terms of computational efficiency. However, with respect to complex polydisperse sprays, the Lagrangian technique gives a higher accuracy. In addition, Lagrangian modeling of secondary effects such as spray-wall interaction enhances the physical description of the two-phase flow. Therefore, in the present approach the Eulerian and the Lagrangian methods have been combined in a hybrid method. The Eulerian method is used to determine a preliminary solution of the two-phase flow field. Subsequently, the Lagrangian method is employed to improve the accuracy of the first solution using detailed sets of initial conditions. Consequently, this combined approach improves the overall convergence behavior of the simulation. In the final section, the advantages of each method are discussed when predicting an evaporating spray in an intake manifold of an internal combustion engine.

1.
Crowe
,
C. T.
,
1982
, “
Review—Numerical Models for Dilute Gas-Particle Flows
,”
ASME J. Fluids Eng.
,
104
, pp.
297
303
.
2.
Klose, G., Schmehl, R., Meier, R., Maier, G., Koch, R., Wittig, S., Hettel, M., Leuckel, W., and Zarzalis, N., 2000, “Evaluation of Advanced Two-Phase Flow and Combustion Models for Predicting Low Emission Combustors,” ASME Paper 00-GT-133.
3.
Hallmann
,
M.
,
Scheurlen
,
M.
, and
Wittig
,
S.
,
1995
, “
Computation of Turbulent Evaporating Sprays: Eulerian Versus Lagrangian Approach
,”
ASME J. Eng. Gas Turbines Power
,
117
, pp.
112
119
.
4.
Schmehl, R., Rosskamp, H., Willmann, M., and Wittig, S., 1998, “CFD Analysis of Spray Propagation and Evaporation Including Wall Film Formation and Spray/Film Interactions,” ILASS ’98 Europe, pp. 546–555.
5.
Preclik, D., Estublier, D., and Wennerberg, D., 1995, “An Eulerian-Lagrangian Approach to Spray Combustion Modeling for Liquid Bi-Propellant Rocket Motors,” AIAA, Technical Report 95-2779.
6.
Ishii, M., 1975, Thermo-Fluid Dynamic Theory of Two Phase Flow, Eyrolles.
7.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
, pp.
269
289
.
8.
Rodi, W., 1984, Turbulence Models and Their Application in Hydraulics—A State of the Art Review, IAHR.
9.
Mellville
,
W. K.
, and
Bray
,
K. N. C.
,
1979
, “
A Model of the Two-Phase Turbulent Jet
,”
Int. J. Heat Mass Transf.
,
22
, pp.
647
656
.
10.
Kra¨mer, M., 1988, “Untersuchungen zum Bewegungsverhalten von Tropfen in turbulenter Stro¨mung in Hinblick auf Verbrennungsvorga¨nge,” dissertation, Universita¨t Karlsruhe.
11.
Snyder
,
W.
, and
Lumley
,
J. L.
,
1971
, “
Some Measurements of Particle Velocity Autocorrelation Functions in a Turbulent Flow
,”
J. Fluid Mech.
,
48
, pp.
41
71
.
12.
Klose, G., Rembold, B., Koch, R., and Wittig, S., 2000, “Comparison of State of the Art Droplet-Turbulence Interaction Models for Aero-Engine Combustor Conditions,” Proceedings of the Third International Symposium on Turbulence, Heat and Mass Transfer, T. Tsuji, Y. Nagano, and K. Hanjalic´, eds., Nagoya, Apr., 3, pp. 763–770.
13.
Wiegand
,
H.
,
1987
, “
Die Einwirkung eines ebenen Stro¨mungsfeldes auf frei bewegliche Tropfen und ihren Widerstandsbeiwert im Reynoldszahlenbereich von 50 bis 2000
,”
Fortschrittberichte VDI
,
7
(120).
14.
Gosman
,
A. D.
, and
Ioannides
,
E.
,
1983
, “
Aspects of Computer Simulation of Liquid-Fueled Combustors
,”
J. Energy
,
7
(
6
), pp.
482
490
.
15.
Milojevic´
,
D.
,
1990
, “
Lagrangian Stochastic-Deterministic (LSD) Predictions of Particle Dispersion in Turbulence
,”
Part. Part. Syst. Charact.
,
7
, pp.
181
190
.
16.
Faeth
,
G. M.
,
1983
, “
Evaporation and Combustion of Sprays
,”
Prog. Energy Combust. Sci.
,
9
, pp.
1
76
.
17.
Sirignano
,
W. A.
,
1984
, “
Fuel Droplet Vaporization and Spray Combustion Theory
,”
Prog. Energy Combust. Sci.
,
9
, pp.
291
322
.
18.
Aggarwal
,
S. K.
, and
Peng
,
F.
,
1995
, “
A Review of Droplet Dynamics and Vaporization Modeling for Engineering Calculations
,”
ASME J. Eng. Gas Turbines Power
,
117
, pp.
453
461
.
19.
Abramzon
,
B.
, and
Sirignano
,
W. A.
,
1989
, “
Droplet Vaporisation Models for Spray Combustion Calculations
,”
Int. J. Heat Mass Transf.
,
32
, pp.
1605
1618
.
20.
Samenfink, W., 1997, “Grundlegende Untersuchung zur Tropfeninteraktion mit schubspannungsgetriebenen Wandfilmen,” dissertation, Institut fu¨r Thermische Stro¨mungsmaschinen, Universita¨t Karlsruhe (TH).
21.
Coghe, A., Cossali, G. E., and Marengo, M., 1995, “A First Study About Single Droplet Impingement on Thin Liquid Film in a Low Laplace Number Range,” ICLASS-95, Nu¨rnberg, pp. 285–293.
22.
Crowe
,
C. T.
,
Sharma
,
M. P.
, and
Stock
,
D. E.
,
1977
, “
The Particle-Source-In Cell (PSI-CELL) Model for Gas-Droplet Flows
,”
ASME J. Fluids Eng.
,
99
, pp.
325
332
.
23.
Rottenkolber, G., Ko¨lmel, A., Dullenkopf, K., Wittig, S., Feng, B., and Spicher, U., 1999, “Influence of Mixture Preparation on Combustion and Emissions Inside an SI Engine by Means of Visualization, PIV and IR Thermography During Cold Operating Conditions,” SAE Tech. Paper Nr. 1999-01-3644.
24.
Schmehl, R., Maier, G., and Wittig, S., 2000, “CFD Analysis of Fuel Atomization, Secondary Droplet Breakup and Spray Dispersion in the Premix Duct of a LPP Combustor,” 8th International Conference on Liquid Atomization and Spray Systems, ICLASS 2000, Pasadena, CA, July 16–20.
25.
Schmehl, R., Klose, G., Maier, G., and Wittig, S., 1998, “Efficient Numerical Calculation of Evaporating Sprays in Combustion Chamber Flows,” 92nd Symp. on Gas Turbine Combustion, Emissions and Alternative Fuels, RTO Meeting Proceedings 14, Lisbon.
You do not currently have access to this content.