Combustion using silicon carbide coated, carbon–carbon composite porous inert media (PIM) was investigated. Two combustion modes, surface and interior, depending upon the location of flame stabilization, were considered. Combustion performance was evaluated by measurements of pressure drop across the PIM, emissions of and CO, and the lean blow-off limit. Data were obtained for the two combustion modes at identical conditions for a range of reactant flowrates, equivalence ratios, and pore sizes of the PIM. Results affirm PIM combustion as an effective method to extend the blow-off limit in lean premixed combustion.
Issue Section:
Gas Turbines: Combustion and Fuel
1.
Lefebvre
, A. H.
, 1995
, “The Role of Fuel Preparation in Low-Emissions Combustion
,” ASME J. Eng. Gas Turbines Power
, 177
, pp. 617
–654
.2.
Dalla Betta
, R. A.
, Schlatter
, J. C.
, Nickolas
, S. G.
, Cutrone
, M. B.
, Beebe
, K. W.
, Furuse
, Y.
, and Tsuchiya
, T.
, 1997
, “Development of a Catalytic Combustor for a Heavy-Duty Utility Gas Turbine
,” ASME J. Eng. Gas Turbines Power
, 119
, pp. 844
–851
.3.
Sullivan, J. D., Kendall, R. M., and McDougald, N. K., 2000, “Development of a Low Emission Gas Turbine Combustor,” AFRC International Symposium, Newport Beach, CA.
4.
Ontko, J. S., 2000, National Energy Technology Laboratory (private communication).
5.
Hardesy
, D. R.
, and Weinberg
, F. J.
, 1976
, “Converter Efficiency in Burner Systems Producing Large Excess E˙nthalpies
,” Combust. Sci. Technol.
, 12
, pp. 153
–157
.6.
Howell
, J. R.
, Hall
, M. J.
, and Ellzey
, J. L.
, 1996
, “Radiation Enhanced/Controlled Phenomena of Heat and Mass Transfer in Porous Media
,” Prog. Energy Combust. Sci.
, 22
, pp. 121
–145
.7.
Viskanta, R., 1995, “Interaction of Combustion and Heat Transfer in Porous Inert Media,” in Transport Phenomena in Combustion, edited by S. H. Chan, pp. 64–87, Taylor and Francis.
8.
Trimis
, D.
, and Durst
, F.
, 1996
, “Combustion in a Porous Medium-Advances and Applications
,” Combust. Sci. Technol.
, 121
, p. 153
153
.9.
Kotani
, Y.
, and Takeno
, T.
, 1982
, “An Experimental Study on Stability and Combustion Characteristics of an Excess Enthalpy Flame
,” Proc. Combust. Institute
, 19
, pp. 1503
–1509
.10.
Hsu
, P. F.
, Evans
, W. D.
, and Howell
, J. R.
, 1993
, “Experimental and Numerical Study of Premixed Combustion Within Nonhomogeneous Porous Ceramics
,” Combust. Sci. Technol.
, 90
, pp. 149
–172
.11.
Rumminger
, M. D.
, and Dibble
, R. W.
, 1996
, “Gas Temperature above a Porous Radiant Burner: Comparison of Measurements and Model Predictions
,” Proc. Combustion Institute
, 26
, pp. 1755
–1762
.12.
Pickenaker
, O.
, Pickenacker
, K.
, Wawrzinek
, K.
, Trimis
, D.
, Pritzkow
, W. E. C.
, Muller
, C.
, Goedtke
, P.
, Papenburg
, U.
, Adler
, J.
, Standke
, G.
, Heymer
, H.
, Tauscher
, W.
, and Jansen
, F.
, 1999
, “Innovative Ceramic Materials for Porous-Medium Burners
,” Interceram
, 48
, pp. 1
–12
.13.
Sherman, A. J., Tuffias, R. H., and Kaplan, R. B., “Refractory Ceramic Foams: A Novel New High Temperature Structure,” http://www.ultramet.com/foamtech.htm.
14.
Khanna
, V.
, Goel
, R.
, and Ellzey
, J. L.
, 1994
, “Measurements of Emissions and Radiation for Methane Combustion Within a Porous Medium Burner
,” Combust. Sci. Technol.
, 99
, pp. 133
–142
.15.
Bhargava, A., Kendrick, D. W., Colket, M. B., and Sowa, W. A., 2000, “Pressure Effect on NOx and CO Emissions in Industrial Gas Turbines,” ASME 2000-GT-0097.
16.
Mital
, R.
, Gore
, J. P.
, and Viskanta
, R.
, 1997
, “A Study of the Structure of Submerged Reaction Zone in Porous Ceramic Radiant Burners
,” Combust. Flame
, 111
, pp. 175
–184
.Copyright © 2005
by ASME
You do not currently have access to this content.