Close coupling of automotive three-way catalytic converters is becoming a common practice in order to reduce pollutant emissions during cold start. In such applications, the exhaust gas mass flow may fluctuate, as a function of crankshaft angle. A simplified one-dimensional channel model is developed, assuming that pollutant conversion in the catalyst is mass transfer limited. This model is applied to evaluate the effect of pulsations in catalyst performance, and assess the accuracy of the “quasi-steady state” approach usually involved in three-way catalytic converter models, when applied to simulate converters under pulsating flow.

1.
Ogura
,
H.
,
Koga
,
M.
,
Momoshima
,
S.
,
Nishizawa
,
K.
, and
Yamamoto
,
S.
, 2003, “
Development of Third Generation of Gasoline P-ZEV Technology
.” SAE paper 2003-01-0816.
2.
Zhao
,
F. Q.
,
Bai
,
L.
,
Liu
,
Y.
,
Chue
,
T. H.
, and
Lai
,
M. C.
, 1997, “
Transient Flow Characteristics Inside the Catalytic Converter of a Firing Gasoline Engine
.” SAE Paper 971014.
3.
Berkman
,
M.
, and
Katari
,
A.
, 2002, “
Transient CFD: How Valuable is it for Catalyst Design?
.” SAE paper 2002-01-0064.
4.
Badami
,
M.
,
Millo
,
F.
,
Zuarini
,
A.
, and
Gambarotto
,
M.
, 2003, “
CFD Analysis and experimental Validation of the Inlet Flow Distribution in Close Coupled Catalytic Converters
.” SAE paper 2003-01-3072.
5.
Yoshizawa
,
K.
,
Mori
,
K.
, and
Kimura
,
S.
, 2001, “
Numerical Analysis of the Exhaust Gas Flow and Heat Transfer in a Close-Coupled Catalytic Converter System During Warm-Up
.” SAE paper 2001-01-0943.
6.
Benjamin
,
S. F.
, and
Roberts
,
C. A.
, 2000, “
Warm-Up Of An Automotive Catalyst Substrate by Pulsating Flow: A Single Channel Modeling Approach
.”
Int. J. Heat Fluid Flow
0142-727X,
21
, pp.
717
726
.
7.
Liu
,
Z.
,
Benjamin
,
S. F.
, and
Roberts
,
C. A.
, 2003, “
Pulsating Flow Maldistribution within an Axisymmetric Catalytic Converter—Flow Rig Experiment and Transient CFD Simulation
.” SAE paper 2003-01-3070.
8.
Koltsakis
,
G. C.
,
Konstantinidis
,
P. A.
, and
Stamatelos
,
A. M.
, 1997, “
Development and Application Range Of Mathematical Models for Three-Way Catalytic Converters
.”
Appl. Catal., B
0926-3373,
12
, pp.
161
191
.
9.
Braun
,
J.
,
Hauber
,
T.
,
Többen
,
H.
,
Windmann
,
J.
,
Zacke
,
P.
,
Chatterjee
,
D.
,
Correa
,
C.
,
Deutschmann
,
O.
,
Maier
,
L.
,
Tischer
,
S.
, and
Warnaz
,
J.
, 2002, “
Three-Dimensional Simulation of the Transient Behavior of a Three-Way Catalytic Converter
.” SAE paper 2002-01-0065.
10.
Heck
,
R. M.
, and
Farrauto
,
R. J.
, 1995,
Catalytic Air Pollution Control—Commercial Technology
,
Van Nostrand Rheinold
, New York, pp.
6
8
, Chap. 1.3.
11.
Oh
,
S. H.
, and
Cavendish
,
J. C.
, 1982, “
Transients of Monolithic Catalytic Converters: Response to Step Changes in Feedstream Temperature as Related to Controlling Automobile Emissions
,”
Ind. Eng. Chem. Prod. Res. Dev.
0196-4321,
21
, pp.
29
37
.
12.
Ferziger
,
J. H.
, 1981,
Numerical Methods for Engineering Application
,
Wiley
, New York, pp.
234
240
, Chap. 20.
13.
Liu
,
Z.
,
Benjamin
,
S. F.
,
Roberts
,
C. A.
,
Zhao
,
H.
, and
Arias-Garcia
,
A.
, 2003, “
Coupled 1D/3D Simulations for the Flow Behavior Inside a Close-Coupled Catalytic Converter
.” SAE paper 2003-01-1875.
14.
Mondt
,
J. R.
, 1987, “
Adapting the Heat and Mass Transfer Analogy to Model Performance of Automotive Catalytic Converters
.”
J. Eng. Gas Turbines Power
0742-4795,
109
, pp.
200
206
.
15.
Koltsakis
,
G. C.
, and
Tsinoglou
,
D. N.
, 2003, “
Thermal Response of Close-Coupled Catalysts During Light-Off
.” SAE paper 2003-01-1876.
16.
Tsinoglou
,
D. N.
, and
Koltsakis
,
G. C.
, 2004, “
Modeling the Effect of Flow Pulsations in Close Coupled Catalytic Converter Light-Off
.” SAE paper 2004-01-1835.
You do not currently have access to this content.