Mixture preparation is a crucial aspect for the correct operation of modern direct injection (DI) Diesel engines as it greatly influences and alters the combustion process and, therefore, the exhaust emissions. The complete comprehension of the spray impingement phenomenon is a quite complete task and a mixed numerical-experimental approach has to be considered. On the modeling side, several studies can be found in the scientific literature but only in the last years complete multidimensional modeling has been developed and applied to engine simulations. Among the models available in literature, in this paper, the models by Bai and Gosman (Bai, C., and Gosman, A. D., 1995, SAE Technical Paper No. 950283) and by Lee et al. (Lee, S., and Ryou, H., 2000, Proceedings of the Eighth International Conference on Liquid Atomization and Spray Systems, Pasadena, CA, pp. 586–593; Lee, S., Ko, G. H., Ryas, H., and Hong, K. B., 2001, KSME Int. J., 15(7), pp. 951–961) have been selected and implemented in the KIVA-3V code. On the experimental side, the behavior of a Diesel impinging spray emerging from a common rail injection system (injection pressures of 80 and 120MPa) has been analyzed. The impinging spray has been lightened by a pulsed laser sheet generated from the second harmonic of a Nd-yttrium-aluminum-garnet laser. The images have been acquired by a charge coupled device camera at different times from the start of injection. Digital image processing software has enabled to extract the characteristic parameters of the impinging spray with respect to different operating conditions. The comparison of numerical and experimental data shows that both models should be modified in order to allow a proper simulation of the splash phenomena in modern Diesel engines. Then the numerical data in terms of radial growth, height and shape of the splash cloud, as predicted by modified versions of the models are compared to the experimental ones. Differences among the models are highlighted and discussed.

1.
Hong
,
K.
,
Lee
,
S. H.
, and
Ryou
,
H. S.
, 2001, “
Modelling of Wall Films Formed by Impinging Diesel Sprays
,” SAE Technical Paper No. 2001-01-3228.
2.
Gavaises
,
M.
,
Theodorakakos
,
A.
, and
Bergeles
,
G.
, 1996, “
Modelling Wall Impaction of Diesel Sprays
,”
Int. J. Heat Fluid Flow
0142-727X,
17
, pp.
130
138
.
3.
Mohammadi
,
A.
,
Kidoguki
,
Y.
, and
Miwa
,
K.
, 2002, “
High Time-Space Resolution Analysis of Droplets Behavior and Gas Entrainment into Diesel Sprays Impinging on Walls
,” 16th ICLASS Europe Meeting, Germany.
4.
Borthwick
,
F. P.
, and
Farrel
,
P. V.
, 2002, “
Fuel Injection Spray and Combustion Chamber Wall Impingement in Large Bore Diesel Engines
,” SAE Technical Paper No. 2002-01-0496.
5.
Katsura
,
N.
,
Saito
,
M.
,
Senda
,
J.
, and
Fujimoto
,
H.
, 1989, “
Characteristics of a Diesel Spray Impinging on a Flat Wall
,” SAE Technical Paper No. 890264.
6.
Saito
,
A.
,
Kawamura
,
K.
,
Watanabe
,
S.
,
Takahashi
,
T.
, and
Tuzuki
,
N.
, 1993, “
Analysis of Impinging Spray Characteristics under High-Pressure Fuel Injection
,”
Trans. Jpn. Soc. Mech. Eng., Ser. B
0387-5016,
59
, pp.
3290
3295
.
7.
Fujimoto
,
H.
,
Senda
,
J.
,
Nagae
,
M.
,
Hashimoto
,
A.
,
Saito
,
M.
, and
Katsura
,
N.
, 1990, “
Characteristics of a Diesel Spray Impinging on a Flat Wall
,”
Proceedings of COMODIA 90 Int. Symposium on Diagnostic and Modeling of Combustion in I.C. Engines
, Kyoto, Japan, pp.
193
198
.
8.
Arcoumanis
,
C.
, and
Chang
,
J. C.
, 1994, “
Flow and Heat Transfer Characteristics of Impinging Transient Diesel Sprays
,” SAE Technical Paper No. 940678.
9.
De Vita
,
A.
,
Di Angelo
,
L.
, and
Allocca
,
L.
, 2002, “
Early Injection and Time-Resolved Evolution of a Spray for GDI Engines
,” ASME Fluids Engineering Division Summer Meeting, Montreal.
10.
Di Stasio
,
S.
, and
Allocca
,
L.
, 2000, “
Influence of the Gas Ambient Nature on Diesel Spray Properties at High Injection Pressure: Experimental Results
,” THIESEL 2000, Valencia, Spain.
11.
Allocca
,
L.
,
De Vita
,
A.
, and
Di Angelo
,
L.
, 2002, “
Wall-Impingement Analysis of a Spray From a Common Rail Injection System for Diesel Engines
,” THIESEL 2002, Valencia, Spain.
12.
Winterbone
,
D. E.
,
Yates
,
D. A.
,
Clough
,
E.
,
Rao
,
K. K.
,
Gomes
,
P.
, and
Sun
,
J. H.
, 1994, “
Quantitative Analysis of Combustion in High-Speed Direct Injection Diesel Engines
,” COMODIA 94 July 11–14, 1994 Yokohama, Japan.
13.
Naber
,
J. D.
, and
Reitz
,
R. D.
, 1988, “
Modeling Engine/Spray Wall Impingement
,” SAE Technical Paper No. 881316.
14.
Wachters
,
L. H. J.
, and
Westerling
,
N. A. J.
, 1966, “
The Heat Transfer From a Hot Wall to Impinging Water Drops in the Spheroidal State
,”
Chem. Eng. Sci.
0009-2509,
21
, pp.
1047
1056
.
15.
Allocca
,
L.
,
Amato
,
U.
,
Bertoli
,
C.
, and
Corcione
,
F. E.
, 1990, “
Comparison of Models and Experiments for Diesel Fuel Sprays
,” COMODIA 1990, Int. Symposium on Diagnostic and Modelling of Combustion in IC Engines, Kyoto, Japan, pp.
225
261
.
16.
Eckause
,
J. E.
, and
Reitz
,
R. D.
, 1995, “
Modeling Heat Transfer to Impinging Fuel Sprays in Direct-Injection Engines
,”
Atomization Sprays
1044-5110,
5
, pp.
213
242
.
17.
Guerrassi
,
N.
, and
Champoussin
,
J. C.
, 1996, “
Experimental Study and Modeling of Diesel Spray/Wall Impingement
,” SAE Technical Paper No. 960864.
18.
Wang
,
D. M.
, and
Watkins
,
A. P.
, 1993, “
Numerical Modeling of Diesel Spray Impinging on Flat Walls
,”
Int. J. Heat Fluid Flow
0142-727X
14
, pp.
301
312
.
19.
Mundo
,
C.
,
Sommerfeld
,
M.
, and
Tropea
,
C.
, 1995, “
Droplet-Wall Collisions: Experimental Studies of the Deformation and Breakup Process
,”
Int. J. Multiphase Flow
0301-9322,
21
(
2
), pp.
151
173
.
20.
Mundo
,
C.
,
Sommerfeld
,
M.
, and
Tropea
,
C.
, 1996, “
Spray Wall Impingement Phenomena: Experimental Investigations and Numerical Predictions
,” 12th Annual Conference of ICLASS Europe, Lund, Sweden, pp.
19
21
.
21.
Marengo
,
M.
,
Steigleder
,
T.
, and
Tropea
,
C.
, 1996, “
Aupfrall von Tropfen auf Flussigkeitsfilmen
,” Workshop uber Sprays, Erfassung von Spruhvorgangen und Techniken der Fluidzerstaubung, pp.
A
3-1–A 3-
8
.
22.
Grover
,
R. O.
, Jr.
, and
Assanis
,
D. N.
, 2001, “
A Spray Wall Impingement Model Based Upon Conservation Priciples
,” Fifth International Symposium on Diagnostics and Modeling of Combustion in Internal Combustion Engines, pp.
551
559
.
23.
Stanton
,
D. W.
, and
Rutland
,
C. J.
, 1996, “
Modelling Fuel Film Formation and Wall Interaction in Diesel Engines
,” SAE Technical Paper No. 960628.
24.
Yarin
,
A. L.
, and
Weiss
,
D. A.
, 1995, “
Impact of Drops on Solid Surfaces: Self-Similar Capillary Waves, and Splashing as a New Type of Kinematic Discontinuity
,”
J. Fluid Mech.
0022-1120,
283
, pp.
141
173
.
25.
Bai
,
C.
, and
Gosman
,
A. D.
, 1995, “
Development of Methodology for Spray Impingement Simulation
,” SAE Technical Paper No. 950283.
26.
O’Rourke
,
P. J.
, and
Amsden
,
A. A.
, 1996, “
A Particle Numerical Model for Wall Film Dynamics in Port-Injected Engines
,” SAE Technical Paper No. 961961.
27.
O’Rourke
,
P. J.
, and
Amsden
,
A. A.
, 2000. “
A Spray/Wall Interaction Submodel for the KIVA-3V Wall Film Model
,” SAE Technical Paper No. 2000-01-0271.
28.
Lee
,
S.
, and
Ryou
,
H.
, 2000, “
Modeling of Spray-Wall Interactions Considering Liquid Film Formation
,”
Proceedings of the Eighth International Conference on Liquid Atomization and Spray Systems
, Pasadena, CA, pp.
586
593
.
29.
Lee
,
S.
,
Ko
,
G. H.
,
Ryou
,
H.
, and
Hong
,
K. B.
, 2001, “
Development and Application of a New Spray Impingement Model Considering Film Formation in a Diesel Engine
,”
KSME Int. J.
1226-4865,
15
(
7
), pp.
951
961
.
30.
Andreassi
,
L.
, and
Ubertini
,
S.
, 2005, “
Multidimensional Modeling of Spray Impingement in Modern Diesel Engines
,” SAE Technical Paper No. 2005-24-092.
31.
Allocca
,
L.
,
Andreassi
,
L.
, and
Ubertini
,
S.
, 2006. “
Evaluation of Splash Models With High-Pressure Diesel Spray
,” SAE Technical Paper No. 2006-01-1117.
32.
International Standard
(1998) ISO 4113, 2nd ed., 1998-11-15.
33.
von Kuensberg Sarre
,
C. K.
,
Kong
,
S. C.
, and
Reitz
,
R. D.
, 1999, “
Modeling the Effects of Injector Nozzle Geometry on Diesel Sprays
,” SAE Technical Paper No. 1999-01-0912.
34.
Hu
,
K.
, and
Gosman
,
A. D.
, 1991, “
A Phenomenological Model of Diesel Spray Atomization
,”
Proc. of the International Conference on Multiphase Flows
, Tsukuba, Japan.
35.
Reitz
,
R. D.
, and
Diwakar
,
R.
, 1987, “
Structure of High Pressure Fuel Sprays
,” SAE Technical Paper No. 870598.
36.
Bella
,
G.
,
Rocco
,
V.
, and
Ubertini
,
S.
, 2002, “
Combustion and Spray Simulation of a DI Turbocharged Diesel Engine
,”
2002 SAE Trans. J. Engines
,
111
, pp.
2549
2565
.
37.
O’Rourke
,
P. J.
, and
Amsden
,
A. A.
, 1987, “
The Tab Method for Numerical Calculation of Spray Droplet Breakup
,” SAE Technical Paper No. 872089.
38.
Ibrahim
,
E. A.
,
Yang
,
H. Q.
, and
Przekwas
,
A. J.
, 1993, “
Modeling of Spray Droplets Deformation and Breakup
,”
J. Propul. Power
0748-4658,
9
, pp.
651
654
.
39.
Patterson
,
M. A.
, and
Reitz
,
R.
, 1998, “
Modeling the Effects of Fuel Spray Characteristics on Diesel Engine Combustion and Emission
,” SAE Technical Paper No. 980131.
You do not currently have access to this content.