For millimeter-scale microturbines, the principal challenge is to achieve a design scheme to meet the aerothermodynamics, geometry restriction, structural strength, and component functionality requirements while in consideration of the applicable materials, realizable manufacturing, and installation technology. This paper mainly presents numerical investigations on the aerothermodynamic design, geometrical design, and overall performance prediction of a millimeter-scale radial turbine with a rotor diameter of 10 mm. Four kinds of turbine rotor profiles were designed, and they were compared with one another in order to select the suitable profile for the microradial turbine. The leaving velocity loss in microgas turbines was found to be a large source of inefficiency. The approach of refining the geometric structure of rotor blades and the profile of diffuser were adopted to reduce the exit Mach number, thus improving the total-static efficiency. Different from general gas turbines, microgas turbines are operated in low Reynolds numbers (104105), which has significant effect on flow separation, heat transfer, and laminar to turbulent flow transition. Based on the selected rotor profile, several microgas turbine configurations with different tip clearances of 0.1 mm, 0.2 mm, and 0.3 mm, two different isothermal wall conditions, and two laminar-turbulent transition models were investigated to understand the particular influences of low Reynolds numbers. These influences on the overall performance of the microgas turbine were analyzed in detail. The results indicate that these configurations should be included and emphasized during the design process of the millimeter-scale microradial turbines.

1.
Epstein
,
A. H.
, 2004, “
Millimeter-Scale, MEMS Gas Turbine Engines
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
126
(
2
), pp.
205
226
.
2.
Epstein
,
A. H.
, and
Senturia
,
S. D.
, 1997, “
Macro Power From Micro Machinery
,”
Science
0036-8075,
276
, p.
1211
.
3.
Epstein
,
A. H.
,
Senturia
,
S. D.
,
Al-Midani
,
O.
,
Anathasuresh
,
G.
,
Ayon
,
A.
,
Breuer
,
K.
,
Chen
,
K-S.
,
Ehrich
,
F. E.
,
Esteve
,
E.
,
Frechette
,
L.
,
Gauba
,
G.
,
Ghodssi
,
R.
,
Groshenry
,
C.
,
Jacobson
,
S.
,
Kerrebrock
,
J. L.
,
Lang
,
J. H.
,
Lin
,
C. C.
,
London
,
A.
,
Lopata
,
J.
,
Mehra
,
A.
,
Mur Miranda
,
J. O.
,
Nagle
,
S.
,
Orr
,
D. J.
,
Piekos
,
E.
,
Schmidt
,
M. A.
,
Shirley
,
G.
,
Spearing
,
S. M.
,
Tan
,
C. S.
,
Tzeng
,
Y. S.
, and
Waitz
,
I. A.
, 1997, “
Micro-Heat Engines, Gas Turbines, and Rocket Engines
,”
28th AIAA Fluid Dynamics Conference
, Paper No. AIAA 97-1773.
4.
Epstein
,
A. H.
,
Senturia
,
S. D.
,
Anathasuresh
,
G.
,
Ayon
,
A.
,
Breuer
,
K.
,
Chen
,
K-S.
,
Ehrich
,
F. E.
,
Gauba
,
G.
,
Groshenry
,
C.
,
Jacobson
,
S.
,
Lang
,
J. H.
,
Lin
,
C. C.
,
Mehra
,
A.
,
Mur Miranda
,
J. M.
,
Nagle
,
S.
,
Orr
,
D. J.
,
Piekos
,
E.
,
Schmidt
,
M. A.
,
Shirley
,
G.
,
Spearing
,
S. M.
,
Tan
,
C. S.
,
Tzeng
,
Y. S.
, and
Waitz
,
I. A.
, 1997, “
Power MEMS and Microengines
,”
Transducers '97, The 9th International Conference on Solid-State Sensors and Actuators
, Vol.
2
, pp.
753
756
.
5.
Groshenry
,
C.
, 1995, “
Preliminary Design Study of a Micro-Gas Turbine Engine
,” MS thesis, Department of Aeronautics and Astronautics, MIT, Cambridge, MA.
6.
Jacobson
,
S. A.
, 1998, “
Aerothermal Challenges in the Design of a Microfabricated Gas Turbine Engine
,”
29th AIAA Fluid Dynamics Conference
, Paper No. AIAA 98-2545.
7.
Wallrabe
,
U.
,
Bley
,
P.
,
Krevet
,
B.
,
Menz
,
W.
, and
Mohr
,
J.
, 1994, “
Design Rules and Test of Electrostatic Micromotors Made by the LIGA Process
,”
J. Micromech. Microeng.
0960-1317,
4
, pp.
40
45
.
8.
Guckel
,
H.
,
Christenson
,
T. R.
,
Skrobis
,
K. J.
,
Junq
,
T. S.
,
Klein
,
J.
,
Hartojo
,
K. V.
, and
Widjaja
,
I.
, 1993, “
A First Functional Current Excited Planar Rotational Magnetic Micromotor
,”
Proceedings of the 1993 IEEE Micro Electro Mechanical Systems – MEMS
, pp.
7
11
.
9.
Ayón
,
A. A.
,
Lin
,
C. C.
,
Braff
,
R.
,
Bayt
,
R.
, and
Sawin
,
H. H.
, 1998, “
Etching Characteristics and Profile Control in a Time Multiplexed Inductively Coupled Plasma Etcher
,”
Solid State Sensors and Actuator Workshop
.
10.
Lin
,
C. C.
, 1999, “
Development of a Microfabricated Turbine-Driven Air Bearing Rig
,” Ph.D. thesis, Department of Mechanical Engineering, MIT, Cambridge, MA.
11.
Kang
,
S.
,
Lee
,
S. J.
, and
Prinz
,
F. B.
, 2001, “
Size Does Matter, the Pros and Cons of Miniaturization
,”
ABB Rev.
1013-3119,
1
(
2
), pp.
54
62
.
12.
Matsuo
,
E.
,
Yoshiki
,
H.
,
Nagashima
,
T.
, and
Kato
,
C.
, 2002, “
Development of Ultra Gas Turbines
,”
Technical Digest Power MEMS
, pp.
36
39
.
13.
Matsuura
,
K.
,
Kato
,
C.
,
Yoshiki
,
H.
,
Matsuo
,
E.
,
Ikeda
,
H.
,
Nishimura
,
K.
, and
Sapkota
,
R.
, 2003, “
Prototyping of Small-Sized Two-Dimensional Radial Turbines
,”
International Gas Turbine Congress
, Paper No. IGTC-OS107, pp.
1
7
.
14.
Isomura
,
K.
,
Murayama
,
M.
,
Yamaguchi
,
H.
,
Ijichi
,
N.
,
Saji
,
N.
,
Shiga
,
O.
,
Tanska
,
S.
,
Genda
,
T.
,
Hara
,
M.
, and
Esashi
,
M.
, 2002, “
Component Development of Micromachined Gas Turbine Generators
,”
Technical Digest Power MEMS
, pp.
32
35
.
15.
Isomura
,
K.
, and
Murayama
,
M.
, 2002, “
Design Study of a Micromachined Gas Turbine With Three-Dimensional Impeller
,”
Ninth International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
.
16.
Isomura
,
K.
,
Murayama
,
M.
, 2003, “
Development of Micro-Turbocharger and Micro-Combustor for a Three-Dimensional Gas Turbine at Micro-Scale
,” ASME Paper No. GT2003-38151.
17.
Isomura
,
K.
,
Murayama
,
M.
,
Teramoto
,
S.
,
Hikichi
,
K.
,
Endo
,
Y.
,
Togo
,
S.
, and
Tanaka
,
S.
, 2006, “
Experiment Verification of the Feasibility of a 100 W Class Micro-Scale Gas Turbine at an Impeller Diameter of 10 mm
,”
J. Micromech. Microeng.
0960-1317,
16
, pp.
S254
S261
.
18.
Peirs
,
J.
,
Reynaerts
,
D.
, and
Verplaetesn
,
F.
, 2004, “
A Microturbine for Electric Power Generation
,”
Sens. Actuators, A
0924-4247,
113
(
1
), pp.
86
93
.
19.
Onishi
,
T.
,
Burguburu
,
A.
,
Dessorens
,
O.
, and
Ribaud
,
Y.
, 2005, “
Numerical Design and Study of a MEMS-Based Micro Turbine
,” ASME Paper No. GT2005-68168.
20.
Shan
,
X. C.
,
Zhang
,
Q. D.
,
Sun
,
Y. F.
, and
Wang
,
Z. F.
, 2006, “
Design, Fabrication and Characterization of an Air-Driven Micro Turbine Device
,”
J. Phys.: Conf. Ser.
1742-6588,
34
, pp.
316
321
.
21.
Liu
,
L.
,
Teo
,
C. J.
,
Miki
,
N.
,
Epstein
,
A. H.
, and
Spakovszky
,
Z. S.
, 2003, “
Hydrostatic Gas Journal Bearings for Micro-Turbomachinery
,”
19th Biennial Conference on Mechanical Vibration and Noise
.
22.
Ehrich
,
F. F.
, and
Jacobson
,
S. A.
, 2003, “
Development of High Speed Gas Bearings for High-Power-Density Micro-Devices
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
125
, pp.
141
148
.
23.
Isomura
,
K.
,
Tanaka
,
S.
,
Togo
,
S.
, and
Esashi
,
M.
, 2005, “
Development of High-Speed Micro-Gas Bearings for Three-Dimensional Micro-Turbo Machines
,”
J. Micromech. Microeng.
0960-1317,
15
, pp.
S222
S227
.
24.
Spearing
,
S. M.
, and
Chen
,
K. S.
, 1997, “
Micro-Gas Turbine Engine Materials and Structures
,”
21st Annual Cocoa Beach Conference and Exposition on Composite, Advanced Ceramics, Materials and Structures
.
25.
Chen
,
K. S.
,
Spearing
,
S. M.
, and
Nemeth
,
N. N.
, 2001, “
Structural Design of a Silicon Micro-Turbo-Generator
,”
AIAA J.
0001-1452,
39
, pp.
720
728
.
26.
Moon
,
H. S.
,
Anand
,
L.
, and
Spearing
,
S. M.
, 2002, “
A Constitutive Model for the Mechanical Behavior of Single Crystal Silicon at Elevated Temperature
,”
Mater. Res. Soc. Symp. Proc.
0272-9172,
687
, pp.
279
284
.
27.
Choi
,
D.
,
Shinavski
,
R. J.
,
Steffier
,
W. S.
,
Hoyt
,
S.
, and
Spearing
,
S. M.
, 2001, “
Process Development of Silicon-Silicon Carbide Hybrid Micro-Engine Structures
,”
Mater. Res. Soc. Symp. Proc.
0272-9172,
687
, pp.
197
202
.
28.
NUMECA International
, 2006, NUMECA FINE/TURBO version 7.2-1.
29.
Mansour
,
M. L.
,
Murthy Konan
,
S.
,
Goswami
,
S.
, 2007, “
Prediction of Lapse Rate in Low Pressure Turbines With and Without Modeling of the Laminar-Turbulent Transition
,” ASME Paper No. GT2007-27110.
30.
Ameri
,
A. A.
,
Steinthorsson
,
E.
, and
Rigby
,
D. L.
, 1998, “
Effect of Squealer Tip on Rotor Heat Transfer and Efficiency
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
753
759
.
31.
Menter
F. R.
,
Langtry
,
R. B.
,
Likki
,
S. R.
,
Suzen
,
Y. B.
,
Huang
,
P. G.
, and
Volker
,
S.
, 2004, “
A Correlation Based Transition Model Using Local Variables Part I—Model Formulation
,” ASME Paper No. GT2004-53452.
32.
Langtry
,
R. B.
,
Menter
,
F. R.
,
Likki
,
S. R.
,
Suzen
,
Y. B.
,
Huang
,
P. G.
, and
Volker
,
S.
, 2004, “
A Correlation Based Transition Model Using Local Variables Part II—Test Cases and Industrial Applications
,” ASME Paper No. GT2004-53454.
You do not currently have access to this content.