A parametric study of a solid oxide fuel cell-gas turbine (SOFC-GT) hybrid system design is conducted with the intention of determining the thermodynamically based design space constrained by modern material and operating limits. The analysis is performed using a thermodynamic model of a generalized SOFC-GT system where the sizing of all components, except the fuel cell, is allowed to vary. Effects of parameters such as pressure ratio, fuel utilization, oxygen utilization, and current density are examined. Operational limits are discussed in terms of maximum combustor exit temperature, maximum heat exchanger effectiveness, limiting current density, maximum hydrogen utilization, and fuel cell temperature rise. It was found that the maximum hydrogen utilization and combustor exit temperature were the most significant constraints on the system design space. The design space includes the use of cathode flow recycling and air preheating via a recuperator (heat exchanger). The effect on system efficiency of exhaust gas recirculation using an ejector versus using a blower is discussed, while both are compared with the base case of using a heat exchanger only. It was found that use of an ejector for exhaust gas recirculation caused the highest efficiency loss, and the base case was found to exhibit the highest overall system efficiency. The use of a cathode recycle blower allowed the largest downsizing of the heat exchanger, although avoiding cathode recycling altogether achieved the highest efficiency. Efficiencies in the range of 50–75% were found for variations in pressure ratio, fuel utilization, oxygen utilization, and current density. The best performing systems that fell within all design constraints were those that used a heat exchanger only to preheat air, moderate pressure ratios, low oxygen utilizations, and high fuel utilizations.

1.
Williams
,
M. C.
,
Strakey
,
J.
, and
Sudoval
,
W.
, 2006, “
U.S. DOE Fossil Energy Fuel Cells Program
,”
J. Power Sources
0378-7753,
159
(
2
), pp.
1241
1247
.
2.
Verma
,
A.
,
Rao
,
A. D.
, and
Samuelsen
,
G. S.
, 2006, “
Sensitivity Analysis of a Vision 21 Coal Based Zero Emission Power Plant
,”
J. Power Sources
0378-7753,
158
(
1
), pp.
417
427
.
3.
Daggett
,
D.
,
Eelman
,
S.
, and
Kristiansson
,
G.
, 2003, “
Fuel Cell APU
,”
AIAA International Air and Space Symposium and Exposition: The Next 100 Years
, July 14–17, Dayton, OH.
4.
Kohout
,
L. L.
, and
Schmitz
,
P. C.
, 2003, “
Fuel Cell Propulsion Systems for an All-Electric Personal Air Vehicle
,” NASA Report No. TM-2003-212354.
5.
Colozza
,
A. J.
, 2002,
Hydrogen Storage for Aircraft Applications Overview
, NASA Report No. CR-2002-211867.
6.
Heinzel
,
A.
,
Hebling
,
C.
,
Muller
,
M.
,
Zedda
,
M.
, and
Muller
,
C.
, 2002, “
U.S. DOE Fossil Energy Fuel Cells Program
,”
J. Power Sources
0378-7753,
105
(
2
), pp.
250
255
.
7.
Koroneos
,
C.
, and
Dompros
,
A.
, 2005, “
Advantages of the Use of Hydrogen Fuel as Compared to Kerosene
,”
Resour. Conserv. Recycl.
0921-3449,
44
(
2
), pp.
99
113
.
8.
Zhang
,
X.
,
Li
,
J.
,
Li
,
G.
, and
Feng
,
Z.
, 2007, “
Cycle Analysis of an Integrated Solid Oxide Fuel Cell and Recuperative Gas Turbine With an Air Reheating System
,”
J. Power Sources
0378-7753,
164
(
2
), pp.
752
760
.
9.
Rao
,
A. D.
, and
Samuelsen
,
G. S.
, 2003, “
A Thermodynamic Analysis of Tubular Solid Oxide Fuel Cell Based Hybrid Systems
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
125
(
1
), pp.
59
66
.
10.
Calise
,
F.
,
Dentice d’Accadia
,
M.
,
Palombo
,
A.
, and
Vanoli
,
L.
, 2006, “
Simulation and Exergy Analysis of a Hybrid Solid Oxide Fuel Cell (SOFC)-Gas Turbine System
,”
Energy
0360-5442,
31
(
15
), pp.
3278
3299
.
11.
Calise
,
F.
,
Palombo
,
A.
, and
Vanoli
,
L.
, 2006, “
Design and Partial Load Exergy Analysis of Hybrid SOFC-GT Power Plant
,”
J. Power Sources
0378-7753,
158
(
1
), pp.
225
244
.
12.
Chan
,
S. H.
,
Low
,
C. F.
, and
Ding
,
O. L.
, 2002, “
Energy and Exergy Analysis of Simple Solid-Oxide Fuel-Cell Power Systems
,”
J. Power Sources
0378-7753,
103
(
2
), pp.
188
200
.
13.
Yang
,
W. J.
,
Park
,
S. K.
,
Kim
,
T. S.
,
Kim
,
J. H.
,
Sohn
,
J. L.
, and
Ro
,
S. T.
, 2006, “
Design Performance Analysis of Pressurized Solid Oxide Fuel Cell/Gas Turbine Hybrid Systems Considering Temperature Constraints
,”
J. Power Sources
0378-7753,
160
(
1
), pp.
462
473
.
14.
Zhang
,
X.
,
Li
,
J.
,
Li
,
G.
, and
Feng
,
Z.
, 2006, “
Dynamic Modeling of a Hybrid System of the Solid Oxide Fuel Cell and Recuperative Gas Turbine
,”
J. Power Sources
0378-7753,
163
(
1
), pp.
523
531
.
15.
Kuchonthara
,
P.
,
Bhattacharya
,
S.
, and
Tsutsumi
,
A.
, 2003, “
Energy Recuperation in Solid Oxide Fuel Cell (SOFC) and Gas Turbine (GT) Combined System
,”
J. Power Sources
0378-7753,
117
(
1–2
), pp.
7
13
.
16.
Chan
,
S. H.
,
Ho
,
H. K.
, and
Tian
,
Y.
, 2002, “
Modelling of Simple Hybrid Solid Oxide Fuel Cell and Gas Turbine Power Plant
,”
J. Power Sources
0378-7753,
109
(
1
), pp.
111
120
.
17.
Park
,
S. K.
,
Oh
,
K. S.
, and
Kim
,
T. S.
, 2007, “
Analysis of the Design of a Pressurized SOFC Hybrid System Using a Fixed Gas Turbine Design
,”
J. Power Sources
0378-7753,
170
(
1
), pp.
130
139
.
18.
Costamagna
,
P.
,
Magistri
,
L.
, and
Massardo
,
A. F.
, 2001, “
Design and Part-Load Performance of a Hybrid System Based on a Solid Oxide Fuel Cell Reactor and a Micro Gas Turbine
,”
J. Power Sources
0378-7753,
96
(
2
), pp.
352
368
.
19.
Calise
,
F.
,
Dentice d’Accadia
,
M.
,
Vanoli
,
L.
, and
von Spakovsky
,
M. R.
, 2007, “
Full Load Synthesis/Design Optimization of a Hybrid SOFC-GT Power Plant
,”
Energy
0360-5442,
32
(
4
), pp.
446
458
.
20.
Calise
,
F.
,
Dentice d’Accadia
,
M.
,
Vanoli
,
L.
, and
von Spakovsky
,
M. R.
, 2006, “
Single-Level Optimization of a Hybrid SOFC-GT Power Plant
,”
J. Power Sources
0378-7753,
159
(
2
), pp.
1169
1185
.
21.
Park
,
S. K.
, and
Kim
,
T. S.
, 2006, “
Comparison Between Pressurized Design and Ambient Pressure Design of Hybrid Solid Oxide Fuel Cell-Gas Turbine Systems
,”
J. Power Sources
0378-7753,
163
(
1
), pp.
490
499
.
22.
Aguiar
,
P.
,
Adjiman
,
C. S.
, and
Brandon
,
N. P.
, 2005, “
Anode-Supported Intermediate-Temperature Direct Internal Reforming Solid Oxide Fuel Cell: II. Model-Based Dynamic Performance and Control
,”
J. Power Sources
0378-7753,
147
(
1–2
), pp.
136
147
.
23.
Xue
,
X.
,
Tang
,
J.
,
Sammes
,
N.
, and
Du
,
Y.
, 2005, “
Dynamic Modeling of Single Tubular SOFC Combining Heat/Mass Transfer and Electrochemical Reaction Effects
,”
J. Power Sources
0378-7753,
142
(
1–2
), pp.
211
222
.
24.
Stiller
,
C.
,
Thorud
,
B.
,
Bolland
,
O.
,
Kandepu
,
R.
, and
Imsland
,
L.
, 2006, “
Control Strategy for a Solid Oxide Fuel Cell and Gas Turbine Hybrid System
,”
J. Power Sources
0378-7753,
158
(
1
), pp.
303
315
.
25.
Mueller
,
F.
,
Brouwer
,
J.
,
Jabbari
,
F.
, and
Samuelsen
,
S.
, 2006, “
Dynamic Simulation of an Integrated Solid Oxide Fuel Cell System Including Current-Based Fuel Flow Control
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
3
(
2
), pp.
144
154
.
26.
Milewski
,
J.
,
Miller
,
A.
, and
Salacinski
,
J.
, 2007, “
Off-Design Analysis of SOFC Hybrid System
,”
Int. J. Hydrogen Energy
0360-3199,
32
(
6
), pp.
687
698
.
27.
Yi
,
Y.
,
Rao
,
A. D.
,
Brouwer
,
J.
, and
Samuelsen
,
G. S.
, 2004, “
Analysis and Optimization of a Solid Oxide Fuel Cell and Intercooled Gas Turbine (SOFC-ICGT) Hybrid Cycle
,”
J. Power Sources
0378-7753,
132
(
1–2
), pp.
77
85
.
28.
Winkler
,
W.
, and
Lorenz
,
H.
, 2002, “
The Design of Stationary and Mobile Solid Oxide Fuel Cell-Gas Turbine Systems
,”
J. Power Sources
0378-7753,
105
(
2
), pp.
222
227
.
29.
Chan
,
S. H.
,
Ho
,
H. K.
, and
Tian
,
Y.
, 2003, “
Multi-Level Modeling of SOFC-Gas Turbine Hybrid System
,”
Int. J. Hydrogen Energy
0360-3199,
28
(
8
), pp.
889
900
.
30.
FChart-Software
, 2008, EES Manual.
31.
F-Chart Software
, 2008, Engineering Equation Solver (EES), Madison, WI.
32.
Burt
,
A. C.
,
Celik
,
I. B.
,
Gemmen
,
R. S.
, and
Smirnov
,
A. V.
, 2004, “
A Numerical Study of Cell-to-Cell Variations in a SOFC Stack
,”
J. Power Sources
0378-7753,
126
(
1–2
), pp.
76
87
.
33.
Campanari
,
S.
, and
Iora
,
P.
, 2004, “
Definition and Sensitivity Analysis of a Finite Volume SOFC Model for a Tubular Cell Geometry
,”
J. Power Sources
0378-7753,
132
(
1–2
), pp.
113
126
.
34.
Yoon
,
K. J.
,
Zink
,
P.
,
Gopalan
,
S.
, and
Pal
,
U. B.
, 2007, “
Polarization Measurements on Single-Step Co-Fired Solid Oxide Fuel Cells (SOFCs)
,”
J. Power Sources
0378-7753,
172
(
1
), pp.
39
49
.
35.
Balan
,
C.
,
Dey
,
D.
,
Eker
,
S.-A.
,
Peter
,
M.
,
Sokolov
,
P.
, and
Wotzak
,
G.
, 2004, “
Coal Integrated Gasification Fuel Cell System Study Final Report
,” Hybrid Power Generation Systems, Torrance, CA. Report No. DE-FC26-01NT40779.
36.
Baskharone
,
E. A.
, 2006,
Principles of Turbomachinery in Air Breathing Engines
,
Cambridge University Press
,
New York
.
37.
Kim
,
S.
, and
Kwon
,
S.
, 2006, “
Experimental Determination of Geometric Parameters for an Annular Injection Type Supersonic Ejector
,”
ASME J. Fluids Eng.
0098-2202,
128
, pp.
1164
1171
.
38.
Zhu
,
Y.
,
Cai
,
W.
,
Wen
,
C.
, and
Li
,
Y.
, 2007, “
Fuel Ejector Design and Simulation Model for Anodic Recirculation SOFC System
,”
J. Power Sources
0378-7753,
173
(
1
), pp.
437
449
.
39.
Ferrari
,
M. L.
,
Bernardi
,
D.
, and
Massardo
,
A. F.
, 2006, “
Design and Testing of Ejectors for High Temperature Fuel Cell Hybrid Systems
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
3
, pp.
284
291
.
40.
Marsano
,
F.
,
Magistri
,
L.
, and
Massardo
,
A. F.
, 2004, “
Ejector Performance Influence on a Solid Oxide Fuel Cell Anodic Recirculation System
,”
J. Power Sources
0378-7753,
129
(
2
), pp.
216
228
.
41.
Freeh
,
J. E.
,
Pratt
,
J. W.
, and
Brouwer
,
J.
, 2004, “
Development of a Solid-Oxide Fuel/Cell Gas Turbine Hybrid System for Aerospace Applications
,” NASA Glenn Research Center Report No. TM-2004-213054.
42.
Kim
,
J. -W.
,
Virkar
,
A. V.
,
Fung
,
K. -Z.
,
Mehta
,
K.
, and
Singhal
,
S. C.
, 1999, “
Polarization Effects in Intermediate Temperature, Anode-Supported Solid Oxide Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
146
(
1
), pp.
69
78
.
43.
Mueller
,
F.
,
Gaynor
,
R.
,
Auld
,
A. E.
,
Brouwer
,
J.
,
Jabbari
,
F.
, and
Samuelsen
,
G. S.
, “
Synergistic Integration of a Gas Turbine and Solid Oxide Fuel Cell for Improved Transient Capability
,”
J. Power Sources
0378-7753, in press.
44.
Mueller
,
F.
,
Jabbari
,
F.
,
Brouwer
,
J.
,
Roberts
,
R.
,
Junker
,
T.
, and
Ghezel-Ayagh
,
H.
, 2007, “
Control Design for A Bottoming Solid Oxide Fuel Cell Gas Turbine Hybrid System
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
4
, pp.
221
230
.
45.
Kandepu
,
R.
,
Imsland
,
L.
,
Foss
,
B. A.
,
Stiller
,
C.
,
Thorud
,
B.
, and
Bolland
,
O.
, 2007, “
Modeling and Control of a SOFC-GT-Based Autonomous Power System
,”
Energy
0360-5442,
32
(
4
), pp.
406
417
.
46.
Santarelli
,
M.
,
Leone
,
P.
,
Cali
,
M.
, and
Orsello
,
G.
, 2007, “
Experimental Evaluation of the Sensitivity to Fuel Utilization and Air Management on a 100 kW SOFC System
,”
J. Power Sources
0378-7753,
171
(
1
), pp.
155
168
.
47.
Nehter
,
P.
, 2007, “
A High Fuel Utilizing Solid Oxide Fuel Cell Cycle With Regard to the Formation of Nickel Oxide and Power Density
,”
J. Power Sources
0378-7753,
164
(
1
), pp.
252
259
.
48.
Stiller
,
C.
,
Thorud
,
B.
,
Seljebø
,
S.
,
Mathisen
,
Ø.
,
Karoliussen
,
H.
, and
Bolland
,
O.
, 2005, “
Finite-Volume Modeling and Hybrid-Cycle Performance of Planar and Tubular Solid Oxide Fuel Cells
,”
J. Power Sources
0378-7753,
141
(
2
), pp.
227
240
.
You do not currently have access to this content.