Covers and casings of small to medium size gas turbines can be made from cast austenitic stainless steels, including grades such as CF8C, CF3M, or CF10M. Oak Ridge National Laboratory and Caterpillar have developed a new cast austenitic stainless steel, CF8C-Plus, which is a fully austenitic stainless steel, based on additions of Mn and N to the standard Nb-stabilized CF8C steel grade. The Mn addition improves castability, as well as increases the alloy solubility for N, and both Mn and N synergistically act to boost mechanical properties. CF8C-Plus steel has outstanding creep-resistance at 600900°C, which compares well with Ni-based superalloys such as alloys X, 625, 617, and 230. CF8C-Plus also has very good fatigue and thermal fatigue resistance. It is used in the as-cast condition, with no additional heat-treatments. While commercial success for CF8C-Plus has been mainly for diesel exhaust components, this steel can also be considered for gas turbine and microturbine casings. The purposes of this paper are to demonstrate some of the mechanical properties, to update the long-term creep-rupture data, and to present new data on the high-temperature oxidation behavior of these materials, particularly in the presence of water vapor.

1.
Maziasz
,
P. J.
, and
Pollard
,
M. P.
, 2003, “
High-Temperature Cast Stainless Steel
,”
Advanced Materials & Processes
,
161
(
10
), pp.
57
59
.
2.
Maziasz
,
P. J.
,
Shingledecker
,
J. P.
,
Evans
,
N. D.
, and
Pollard
,
M. P.
, 2008, “
New Heat-Resistant Cast Stainless Steel—CF8C-Plus
,”
Advanced Materials & Processes
,
166
(
10
), pp.
27
29
.
3.
Maziasz
,
P. J.
,
Shingledecker
,
J. P.
,
Evans
,
N. D.
, and
Pollard
,
M. P.
, 2009, “
Developing New Cast Austenitic Stainless Steels With Improved High-Temperature Creep Resistance
,”
ASME J. Pressure Vessel Technol.
0094-9930,
131
(
5
), p.
051404
.
4.
Maziasz
,
P. J.
,
McGreevy
,
T.
,
Pollard
,
M. J.
,
Siebenaler
,
C. W.
, and
Swindeman
,
R. W.
, 2006, “
Heat and Corrosion Resistant Cast CF8C Stainless Steel With Improved High Temperature Strength and Ductility
,” U.S. Patent No. 7,153,373 B2.
5.
Shingledecker
,
J. P.
,
Maziasz
,
P. J.
,
Evans
,
N. D.
,
Santella
,
M. L.
, and
Pollard
,
M. P.
, 2006, “
CF8C Plus, A New High Temperature Austenitic Casting Alloy for Advanced Power Systems
,”
Energy Mater.: Mater. Sci. Eng. Energy Syst.
1748-9237,
1
(
1
), pp.
25
32
.
6.
Shingledecker
,
J. P.
,
Maziasz
,
P. J.
,
Evans
,
N. D.
, and
Pollard
,
M. P.
, 2007, “
Creep Behavior of a New Cast Austenitic Alloy
,”
Int. J. Pressure Vessels Piping
0308-0161,
84
, pp.
21
28
.
7.
Maziasz
,
P. J.
,
Shingledecker
,
J. P.
,
Evans
,
N. D.
, and
Pollard
,
M. P.
, 2007, “
Developing New Cast Austenitic Stainless Steels With Improved High-Temperature Creep Resistance
,”
Proceedings of CREEP8—Eighth International. Conference on Creep and Fatigue at Elevated Temperatures, ASME-PVP2007
, New York, Paper No. CREEP2007-26840.
8.
Shingledecker
,
J. P.
,
Maziasz
,
P. J.
,
Evans
,
N. D.
, and
Pollard
,
M. P.
, 2005, “
Alloy Additions for Improved Creep-Rupture Properties of a Cast Austenitic Alloy
,”
Creep Deformation and Fracture, Design and Life Extension
,
R. S.
Mishra
,
J. C.
Earthman
,
S. V.
Raj
, and
R.
Viswanathan
, eds.,
TMS
,
Warrendale, PA
, pp.
129
138
.
9.
Haynes International, 1997, Hastelloy X Alloy, Haynes International High-Temperature Alloys, Technical Publication H-3009A, Haynes International, Inc., Kokomo, IN.
10.
Special Metals Corp., 2000, INCONEL Alloy 617, Special Metals Corp. Publication SMC 029.
11.
Haynes International, 1993, Haynes 230 Alloy, Data Brochure H3000F, High-Temperature Alloys, Haynes International, Kokomo, IN.
12.
Special Metals Corp., 2006, Inconel Alloy 625, Special Metals Technical Publication No. SMC-063, Special Metals Corp.
13.
ORNL, 2009, Data on Cast Ni-Based Superalloys for Advanced UltraSuperCritical Steam Turbine Applications, ORNL, Oak Ridge, TN, unpublished.
14.
Asteman
,
H.
,
Svensson
,
J. -E.
,
Norell
,
M.
, and
Johansson
,
L. -G.
, 2000, “
Influence of Water Vapor and Flow Rate on the High-Temperature Oxidation of 304L; Effect of Chromium Oxide Hydroxide Evaporation
,”
Oxid. Met.
0030-770X,
54
, pp.
11
26
.
15.
Pint
,
B. A.
, and
Rakowski
,
J. M.
, 2000, “
Effect of Water Vapor on the Oxidation Resistance of Stainless Steels
,” presented at
NACE Corrosion 2000
, Orlando, FL, NACE Paper No. 00-259.
16.
Pint
,
B. A.
,
Peraldi
,
R.
, and
Maziasz
,
P. J.
, 2004, “
The Use of Model Alloys to Develop Corrosion-Resistant Stainless Steels
,”
Mater. Sci. Forum
0255-5476,
461–464
, pp.
799
806
.
17.
Peraldi
,
R.
, and
Pint
,
B. A.
, 2004, “
Effect of Cr and Ni Contents on the Oxidation Behavior of Ferritic and Austenitic Model Alloys in Air With Water Vapor
,”
Oxid. Met.
0030-770X,
61
, pp.
463
483
.
18.
Opila
,
E. J.
, 2004, “
Volatility of Common Protective Oxides in High-Temperature Water Vapor: Current Understanding and Unanswered Questions
,”
Mater. Sci. Forum
0255-5476,
461–464
, pp.
765
774
.
19.
Bangaru
,
N. V.
, and
Krutenat
,
R. C.
, 1984, “
Diffusion Coatings of Steels—Formation Mechanism and Microstructure of Aluminized Heat Resistant Stainless Steels
,”
J. Vac. Sci. Technol. B
1071-1023,
2
, pp.
806
815
.
20.
Miller
,
D. M.
,
Kung
,
S. C.
,
Scarberry
,
S. D.
, and
Rapp
,
R. A.
, 1988, “
Simultaneous Chromizing-Aluminizing Coating of Austenitic Stainless Steels
,”
Oxid. Met.
0030-770X,
29
, pp.
239
254
.
21.
Gleeson
,
B.
, 2006, “
Thermal Barrier Coatings for Aeroengine Applications
,”
J. Propul. Power
0748-4658,
22
, pp.
375
383
.
22.
Pint
,
B. A.
,
Zhang
,
Y.
,
Tortorelli
,
P. F.
,
Haynes
,
J. A.
, and
Wright
,
I. G.
, 2001, “
Evaluation of Iron-Aluminide CVD Coatings for High Temperature Corrosion Protection
,”
Mater. High. Temp.
0960-3409,
18
, pp.
185
192
.
23.
Zhang
,
Y.
,
Pint
,
B. A.
,
Cooley
,
K. M.
, and
Haynes
,
J. A.
, 2008, “
Formation of Aluminide Coatings on Fe-Based Alloys by Chemical Vapor Deposition
,”
Surf. Coat. Technol.
0257-8972,
202
, pp.
3839
3849
.
You do not currently have access to this content.