The design of bladed disks with contact interfaces typically requires analyses of the resonant forced response and flutter-induced limit cycle oscillations. The steady-state vibration behavior can efficiently be calculated using the multiharmonic balance method. The dimension of the arising algebraic systems of equations is essentially proportional to the number of harmonics and the number of degrees of freedom (DOFs) retained in the model. Extensive parametric studies necessary, e.g., for robust design optimization are often not possible in practice due to the resulting computational effort. In this paper, a two-step nonlinear reduced order modeling approach is proposed. First, the autonomous nonlinear system is analyzed using the generalized Fourier-Galerkin method. In order to efficiently study localized nonlinearities in large-scale systems, an exact condensation approach as well as analytically calculated gradients are employed. Moreover, a continuation method is employed in order to predict nonlinear modal interactions. Modal properties such as eigenfrequency and modal damping are directly calculated with respect to the kinetic energy in the system. In a second step, a reduced order model is built based on the single nonlinear resonant mode theory. It is shown that linear damping and harmonic forcing can be superimposed. Moreover, similarity properties can be exploited to vary normal preload or gap values in contact interfaces. Thus, a large parameter space can be covered without the need for recomputation of nonlinear modal properties. The computational effort for evaluating the reduced order model is almost negligible since it contains a single DOF only, independent of the original system. The methodology is applied to both a simplified and a large-scale model of a bladed disk with shroud contact interfaces. Forced response functions, backbone curves for varying normal preload, and excitation level as well as flutter-induced limit cycle oscillations are analyzed and compared to conventional methods. The limits of the proposed methodology are indicated and discussed.

References

1.
Cameron
,
T. M.
,
Griffin
,
J. H.
,
Kielb
,
R. E.
, and
Hoosac
,
T. M.
,
1990
, “
An Integrated Approach for Friction Damper Design
,”
ASME J. Vib. Acoust.
,
112
(
2
), pp.
175
182
.10.1115/1.2930110
2.
Panning
,
L.
,
2002
, Untersuchungen zum Schwingungsverhalten von Gasturbinenschaufeln mit asymmetrischen Reibelementen.
3.
Petrov
,
E. P.
, and
Ewins
,
D. J.
,
2004
, “
State-of-the-Art Dynamic Analysis for Non-Linear Gas Turbine Structures
,”
Proc. IMechE G: J. Aerosp. Eng.
,
218
(
3
), pp.
199
211
.10.1243/0954410041872906
4.
Laxalde
,
D.
,
Thouverez
,
F.
,
Sinou
,
J. J.
, and
Lombard
,
J. P.
,
2007
, “
Qualitative Analysis of Forced Response of Blisks With Friction Ring Dampers
,”
Eur. J. Mech. A Solids
,
26
(
4
), pp.
676
687
.10.1016/j.euromechsol.2006.10.002
5.
Siewert
,
C.
,
Panning
,
L.
,
Wallaschek
,
J.
, and
Richter
,
C.
,
2010
, “
Multiharmonic Forced Response Analysis of a Turbine Blading Coupled by Nonlinear Contact Forces
,”
ASME J. Eng. Gas Turb. Power
,
132
(
8
), p.
082501
.10.1115/1.4000266
6.
Petrov
,
E. P.
, and
Ewins
,
D. J.
,
2003
, “
Analytical Formulation of Friction Interface Elements for Analysis of Nonlinear Multi-Harmonic Vibrations of Bladed Disks
,”
ASME J. Turbomach.
,
125
(
2
), pp.
364
371
.10.1115/1.1539868
7.
Nacivet
,
S.
,
Pierre
,
C.
,
Thouverez
,
F.
, and
Jezequel
,
L.
,
2003
, “
A Dynamic Lagrangian Frequency-Time Method for the Vibration of Dry-Friction-Damped Systems
,”
J. Sound Vib.
,
265
(
1
), pp.
201
219
.10.1016/S0022-460X(02)01447-5
8.
Poudou
,
O.
,
Pierre
,
C.
, and
Reisser
,
B.
,
2004
, “
A New Hybrid Frequency-Time Domain Method for the Forced Vibration of Elastic Structures With Friction and Intermittent Contact
,”
Proc. of the 10th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
,
Honolulu, HI
, March 7–11, Paper No. ISROMAC10-2004-068.
9.
Petrov
,
E. P.
,
2009
, “
Analysis of Sensitivity and Robustness of Forced Response for Nonlinear Dynamic Structures
,”
Mech. Syst. Sig. Process.
,
23
(
1
), pp.
68
86
.10.1016/j.ymssp.2008.03.008
10.
Nikolic
,
M.
,
Petrov
,
E. P.
, and
Ewins
,
D. J.
,
2008
, “
Robust Strategies for Forced Response Reduction of Bladed Disks Based on Large Mistuning Concept
,”
ASME J. Eng. Gas Turb. Power
,
130
(
2
), p.
022501
.10.1115/1.2799524
11.
Krack
,
M.
,
Panning-von Scheidt
,
L.
,
Wallaschek
,
J.
,
Siewert
,
C.
, and
Hartung
,
A.
,
2012
, “
Robust Design of Friction Interfaces of Bladed Disks With Respect to Parameter Uncertainties
,”
Proc. of ASME Turbo Expo 2012
,
Copenhagen, Denmark
, June 11–15, Paper No. GT2012-68578.
12.
Bladh
,
R.
,
Castanier
,
M. P.
, and
Pierre
,
C.
,
1999
, “
Reduced Order Modeling and Vibration Analysis of Mistuned Bladed Disk Assemblies With Shrouds
,”
ASME J. Eng. Gas Turb. Power
,
121
(
3
), pp.
515
522
.10.1115/1.2818503
13.
Craig
,
R. R.
,
2000
, “
Coupling of Substructures for Dynamic Analysis: An Overview
,”
AIAA
Paper No. 2000-1573.10.2514/6.2000-1573
14.
Berthillier
,
M.
,
Dhainhaut
,
M.
,
Burgaud
,
F.
, and
Garnier
,
V.
,
1997
, “
A Numerical Method for the Prediction of Bladed Disk Forced Response
,”
ASME J. Eng. Gas Turb. Power
,
112
(
2
), pp.
404
410
.10.1115/1.2815589
15.
Siewert
,
C.
,
Krack
,
M.
,
Panning
,
L.
, and
Wallaschek
,
J.
,
2008
, “
The Nonlinear Analysis of the Multiharmonic Forced Response of Coupled Turbine Blading
,”
Proc. of the 12th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
,
Honolulu, HI
, March 17–22, Paper No. ISROMAC12-2008-20219.
16.
Pierre
,
C.
,
Ferri
,
A. A.
, and
Dowell
,
E. H.
,
1985
, “
Multi-Harmonic Analysis of Dry Friction Damped Systems Using an Incremental Harmonic Balance Method
,”
ASME J. Appl. Mech.
,
52
(
4
), pp.
958
964
.10.1115/1.3169175
17.
Petrov
,
E. P.
,
2006
, “
Direct Parametric Analysis of Resonance Regimes for Nonlinear Vibrations of Bladed Discs
,”
ASME Turbo Expo 2006: Power for Land
,
Sea and Air, Barcelona, Spain
, May 8–11,
ASME
Paper No. GT2006-90147.10.1115/GT2006-90147
18.
Laxalde
,
D.
, and
Thouverez
,
F.
,
2009
, “
Complex Non-Linear Modal Analysis for Mechanical Systems Application to Turbomachinery Bladings With Friction Interfaces
,”
J. Sound Vib.
,
322
(
4–5
), pp.
1009
1025
.10.1016/j.jsv.2008.11.044
19.
Kerschen
,
G.
,
Peeters
,
M.
,
Golinval
,
J. C.
, and
Vakakis
,
A. F.
,
2009
, “
Nonlinear Normal Modes, Part I: A Useful Framework for the Structural Dynamicist: Special Issue: Non-Linear Structural Dynamics
,”
Mech. Syst. Sig. Process.
,
23
(
1
), pp.
170
194
.10.1016/j.ymssp.2008.04.002
20.
Guillen
,
J.
, and
Pierre
,
C.
,
1998
, “
An Efficient, Hybrid, Frequency-Time Domain Method for the Dynamics of Large-Scale Dry-Friction Damped Structural Systems
,”
Proc. of the IUTAM Symposium
,
Munich, Germany
, August 3–7.
21.
Krack
,
M.
,
Panning-von Scheidt
,
L.
and
Wallaschek
,
J.
,
2013
, “
A High-Order Harmonic Balance Method for Systems With Distinct States
,”
J. Sound Vib.
,
332
(
21
), pp.
5476
5488
.10.1016/j.jsv.2013.04.048
22.
Szemplinska-Stupnicka
,
W.
,
1979
, “
The Modified Single Mode Method in the Investigations of the Resonant Vibrations of Non-Linear Systems
,”
J. Sound Vib.
,
63
(
4
), pp.
475
489
.10.1016/0022-460X(79)90823-X
23.
Chong
,
Y. H.
, and
Imregun
,
M.
,
2000
, “
Development and Application of a Nonlinear Modal Analysis Technique for MDOF Systems
,”
J. Vib. Control
,
7
(
2
), pp.
167
179
.10.1177/107754630100700202
24.
Gibert
,
C.
,
2003
, “
Fitting Measured Frequency Response Using Non-Linear Modes
,”
Mech. Syst. Sig. Process.
,
17
(
1
), pp.
211
218
.10.1006/mssp.2002.1562
25.
Petrov
,
E. P.
,
2004
, “
Method for Direct Parametric Analysis of Nonlinear Forced Response of Bladed Discs With Friction Contact Interfaces
,”
ASME Turbo Expo 2004, Power for Land
,
Sea, and Air, Vienna, Austria
, June 14–17, 2004,
ASME
Paper No. GT2004-53894.10.1115/GT2004-53894
26.
Petrov
,
E. P.
,
2012
, “
Analysis of Flutter-Induced Limit Cycle Oscillations in Gas-Turbine Structures With Friction, Gap, and Other Nonlinear Contact Interfaces
,”
ASME J. Turbomach.
,
134
(
6
), p.
061018
.10.1115/1.4006292
27.
Berthillier
,
M.
,
Dupont
,
C.
,
Mondal
,
R.
, and
Barrau
,
J. J.
,
1998
, “
Blades Forced Response Analysis With Friction Dampers
,”
ASME J. Vib. Acoust.
,
120
(
2
), pp.
468
474
.10.1115/1.2893853
28.
Panning
,
L.
,
Sextro
,
W.
, and
Popp
,
K.
,
2000
, “
Optimization of Interblade Friction Damper Design
,”
ASME Turbo Expo 2000, Power for Land
,
Sea and Air, Munich, Germany
, May 8–11,
ASME
Paper No. 2000-GT-0541.
29.
Georgiades
,
F.
,
Peeters
,
M.
,
Kerschen
,
G.
,
Golinval
,
J. C.
, and
Ruzzene
,
M.
,
2008
, “
Nonlinear Modal Analysis and Energy Localization in a Bladed Disk Assembly
,”
ASME Turbo Expo 2008: Power for Land
,
Sea and Air
, GT2008, Berlin, Germany, June 9–13,
ASME
Paper No. GT2008-51388.10.1115/GT2008-51388
30.
Krack
,
M.
,
Herzog
,
A.
,
Panning-von Scheidt
,
L.
,
Wallaschek
,
J.
,
Siewert
,
C.
, and
Hartung
,
A.
,
2012
, “
Multiharmonic Analysis and Design of Shroud Friction Joints of Bladed Disks Subject to Microslip
,”
ASME 2012 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (IDETC/CIE 2012)
,
Chicago, IL
, August 12–15, ASME Paper No. DETC2012-70184.
You do not currently have access to this content.