An automated reverse engineering process is developed that uses a structured light optical measurement system to collect dense point cloud geometry representations. The modeling process is automated through integration of software for point cloud processing, reverse engineering, solid model creation, grid generation, and structural solution. Process uncertainties are quantified on a calibration block and demonstrated on an academic transonic integrally bladed rotor. These uncertainties are propagated through physics-based models to assess impacts on predicted modal and mistuned forced response. Process details are discussed and recommendations made on reducing uncertainty. Reverse engineered parts averaged a deviation of 0.0002 in. (5 μm) which did not significantly impact low and midrange frequency responses. High frequency modes were found to be sensitive to these uncertainties demonstrating the need for future refinement of reverse engineering processes.

References

1.
Castanier
,
M. P.
, and
Pierre
,
C.
,
2006
, “
Modeling and Analysis of Mistuned Bladed Disk Vibrations: Status and Emerging Directions
,”
J. Propul. Power
,
22
(
2
), pp.
384
396
.10.2514/1.16345
2.
Griffin
,
J. H.
, and
Hoosac
,
T. M.
,
1984
, “
Model Development and Statistical Investigation of Turbine Blade Mistuning
,”
ASME J. Vib., Acoust., Stress, Reliab. Des.
,
106
, pp.
204
210
.10.1115/1.3269170
3.
Lee
,
S.-Y.
,
Castanier
,
M. P.
, and
Pierre
,
C.
,
2005
, “
Assessment of Probabilistic Methods for Mistuned Bladed Disk Vibration
,”
46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Austin, TX
, April 18–21,
AIAA
Paper No. 2005-1990. 10.2514/6.2005-1990
4.
Brown
,
J. M.
,
2008
, “
Reduced Order Modeling Methods for Turbomachinery Design
,” 2008, Ph.D. thesis, Wright State University, Dayton, OH.
5.
Beck
,
J. A.
,
Brown
,
J. M.
,
Slater
,
J. C.
, and
Cross
,
C. J.
,
2012
, “
Probabilistic Mistuning Assessment Using Nominal and Geometry Based Mistuning Methods
,”
Proceedings of the ASME Turbo Expo
,
Copenhagen, Denmark
, June 11–15,
ASME
Paper No. GT2012-68533. 10.1115/GT2012-68533
6.
Sinha
,
A.
,
2009
, “
Reduced-Order Model of a Bladed Rotor With Geometric Mistuning
,”
ASME J. Turbomach.
,
131
(
3
), p.
031007
.10.1115/1.2987237
7.
Mbaye
,
M.
,
Soize
,
C.
, and
Ousty
,
J.-P.
,
2010
, “
A Reduced-Order Model of Detuned Cyclic Dynamical Systems With Geometric Modifications Using a Basis of Cyclic Modes
,”
ASME J. Eng. Gas Turbines Power
,
132
(
11
), p.
112502
.10.1115/1.4000805
8.
Madden
,
A.
,
Epureanu
,
B. I.
, and
Filippi
,
S.
,
2012
, “
Reduced-Order Modeling Approach for Blisks With Large Mass, Stiffness, and Geometric Mistuning
,”
AIAA J.
,
50
(
2
), pp.
366
374
.10.2514/1.J051140
9.
Glaessgen
,
E. H.
, and
Stargel
,
D.
,
2012
, “
The Digital Twin Paradigm for Future NASA and U.S. Air Force Vehicles
,”
53rd AIAA/ASME/ASCE/AHS/AS Structures, Structural Dynamics, and Materials Conference
, Honolulu, HI, April 23–26,
AIAA
Paper No. 2012-1818. 10.2514/6.2012-1818
10.
Huang
,
H.
,
Gong
,
Z. M.
,
Chen
,
X. Q.
, and
Zhou
,
L.
,
2003
, “
SMART Robotic System for 3D Profile Turbine Vane Airfoil Repair
,”
Int. J. Adv. Manuf. Technol.
,
21
, pp.
275
283
.10.1007/s001700300032
11.
Chen
,
F.
,
Brown
,
G. M.
, and
Song
,
M.
,
2000
, “
Overview of Three-Dimensional Shape Measurement Using Optical Methods
,”
Opt. Eng.
,
39
(
1
), pp.
10
22
.10.1117/1.602438
12.
Holtzhausen
,
S.
,
Schreiber
,
S.
,
Schone
,
C.
,
Stelzer
,
R.
,
Heinze
,
K.
, and
Lange
,
A.
,
2009
, “
Highly Accurate Automated 3D Measuring and Data Conditioning for Turbine and Compressor Blades
,”
Proceedings of the ASME Turbo Expo
,
Orlando, FL
, June 8–12,
ASME
Paper No. GT2009-59902. 10.1115/GT2009-59902
13.
Lange
,
A.
,
Voigt
,
M.
,
Vogeler
,
K.
,
Schrapp
,
H.
,
Johann
,
E.
, and
Gummer
,
V.
,
2012
, “
Impact of Manufacturing Variability and Nonaxisymmetry of High Pressure Compressor Stage Performance
,”
ASME J. Eng. Gas Turbines Power
,
134
(3), p.
032504
.10.1115/1.4004404
14.
Garzon
,
V. E.
, and
Darmofal
,
D. L.
,
2003
, “
Impact of Geometric Variability on Axial Compressor Performance
,”
ASME J. Turbomach.
,
125
(
4
), pp.
692
703
.10.1115/1.1622715
15.
Sinha
,
A.
,
Hall
,
B.
,
Cassenti
,
B.
, and
Hilbert
,
G.
,
2008
, “
Vibratory Parameters of Blades From Coordinate Measurement Machine Data
,”
ASME J. Turbomach.
,
130
(
1
), p.
011013
.10.1115/1.2749293
16.
Brown
,
J. M.
, and
Grandhi
,
R. V.
,
2005
, “
Probabilistic High Cycle Fatigue Assessment Process for Integrally Bladed Rotors
,”
Proceedings of the ASME Turbo Expo
,
Reno, NV
, June 6–9,
ASME
Paper No. GT2005-69022. 10.1115/GT2005-69022
17.
Harding
,
K.
,
2005
, “
Latest Optical Methods for Industrial Dimensional Metrology
,”
Proceedings of the International Society for Optics and Photonics
,
Boston, MA
, October 23–27. 10.1117/12.631764
18.
Pauly
,
M.
,
Mitra
,
N. J.
, and
Guibas
,
L. J.
,
2004
, “
Uncertainty and Variability in Point Cloud Surface Data
,”
Eurographics Symposium on Point-Based Graphics
,
Zurich, Switzerland
, June 2–4.
19.
Song
,
H.
, and
Feng
,
H.-Y.
,
2009
, “
A Progressive Point Cloud Simplification Algorithm With Preserved Sharp Edge Data
,”
Int. J. Adv. Manuf. Technol.
,
45
, pp.
583
592
.10.1007/s00170-009-1980-4
20.
Remondino
,
F.
, and
El-Hakim
,
S.
,
2006
, “
Image-Based 3D Modelling: A Review
,”
Photogramm. Rec.
,
21
, pp.
269
291
.10.1111/j.1477-9730.2006.00383.x
21.
Wang
,
J.
, and
Oliveira
,
M. M.
,
2007
, “
Filling Holes on Locally Smooth Surfaces Reconstructed From Point Clouds
,”
Image and Vision Computing
,
25
(1), pp.
103
113
.10.1016/j.imavis.2005.12.006
22.
Mitra
,
N. J.
,
Gelfand
,
N.
,
Pottmann
,
H.
, and
Guibas
,
L.
,
2004
, “
Registration of Point Cloud Data From a Geometric Optimization Perspective
,”
Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing
,
Nice, France
, July 8–10, pp.
22
31
.
23.
Chang
,
K.-H.
, and
Chen
,
C.
,
2011
, “
3D Shape Engineering and Design Parameterization
,”
Comput.-Aided Des. Appl.
,
8
, pp.
681
692
.10.3722/cadaps.2011.681-692
You do not currently have access to this content.