Residence time distributions in a swirling, premixed combustor flow are determined by means of tracer experiments and a reactor network model. The measurements were conducted at nonreacting, reacting, and steam-diluted reacting conditions for steam contents of up to 30% of the air mass flow. The tracer distribution was obtained from the light scattering of seeding particles employing the quantitative light sheet technique (QLS). At steady operating conditions, a positive step of particle feed was applied, yielding cumulative distribution functions (CDF) for the tracer response. The shape of the curve is characteristic for the local degree of mixedness. Fresh and recirculating gases were found to mix rapidly at nonreacting and highly steam-diluted conditions, whereas mixing was more gradual at dry reacting conditions. The instantaneous mixing near the burner outlet is related to the presence of a large-scale helical structure, which was suppressed at dry reacting conditions. Zones of similar mixing time scales, such as the recirculation zones, are identified. The CDF curves in these zones are reproduced by a network model of plug flow and perfectly mixed flow reactors. Reactor residence times and inlet volume flow fractions obtained in this way provide data for kinetic network models.

References

1.
Jonsson
,
M.
, and
Yan
,
J.
,
2005
, “
Humidified Gas Turbines—A Review of Proposed and Implemented Cycles
,”
Energy
,
30
(
7
), pp.
1013
1078
.10.1016/j.energy.2004.08.005
2.
Göke
,
S.
,
Göckeler
,
K.
,
Krüger
,
O.
, and
Paschereit
,
C. O.
,
2010
, “
Computational and Experimental Study of Premixed Combustion at Ultra Wet Conditions
,”
ASME Turbo Expo 2010
, Glasgow, Scotland, June 14–18,
ASME
Paper No. GT2010-23417.10.1115/GT2010-23417
3.
Albin
,
E.
,
Nawroth
,
H.
,
Göke
,
S.
,
D'Angelo
,
Y.
, and
Paschereit
,
C. O.
,
2012
, “
Experimental Investigation of Burning Velocities of Ultra-Wet Methane-Air-Steam Mixtures
,”
Fuel Processing Technology
,
107
, pp.
27
35
.10.1016/j.fuproc.2012.06.027
4.
Göke
,
S.
,
Terhaar
,
S.
,
Schimek
,
S.
,
Göckeler
,
K.
, and
Paschereit
,
C. O.
,
2011
, “
Combustion of Natural Gas, Hydrogen and Bio-Fuels at Ultra-Wet Conditions
,”
ASME Turbo Expo 2011
,
Vancouver, Canada
, June 6–10,
ASME
Paper No. GT2011-45696.10.1115/GT2011-45696
5.
Krüger
,
O.
,
Duwig
,
C.
,
Terhaar
,
S.
, and
Paschereit
,
C. O.
,
2013
, “
Large Eddy Simulations of Hydrogen Oxidation at Ultra-Wet Conditions in a Model Gas Turbine Combustor Applying Detailed Chemistry
,”
ASME J. Eng. Gas Turbine Power
,
135
(
2
), p.
021501
.10.1115/1.4007718
6.
Terhaar
,
S.
,
Göckeler
,
K.
,
Schimek
,
S.
,
Göke
,
S.
, and
Paschereit
,
C. O.
,
2011
, “
Non-Reacting and Reacting Flow in a Swirl-Stabilized Burner for Ultra-Wet Combustion
,”
41st AIAA Fluid Dynamics Conference and Exhibit
,
Honolulu
, HI, June 27–30,
AIAA
Paper No. 2011-3584.10.2514/6.2011-3584
7.
Terhaar
,
S.
, and
Paschereit
,
C. O.
,
2012
, “
High-Speed PIV Investigation of Coherent Structures in a Swirl-Stabilized Combustor Operating at Dry and Steam-Diluted Conditions
,”
16th International Symposium on Applications of Laser Techniques to Fluid Mechanics
,
Lisbon, Portugal
, July 9–12.
8.
Oberleithner
,
K.
,
Sieber
,
M.
,
Nayeri
,
C. N.
,
Paschereit
,
C. O.
,
Petz
,
C.
,
Hege
,
H.-C.
,
Noack
,
B. R.
, and
Wygnanski
,
I.
,
2011
, “
Three-Dimensional Coherent Structures in a Swirling Jet Undergoing Vortex Breakdown: Stability Analysis And Empirical Mode Construction
,”
J. Fluid Mech.
,
679
, pp.
383
414
.10.1017/jfm.2011.141
9.
Syred
,
N.
,
2006
, “
A Review of Oscillation Mechanisms and the Role of the Precessing Vortex Core (PVC) in Swirl Combustion Systems
,”
Prog. Energy Combust. Sci.
,
32
, pp.
93
161
.10.1016/j.pecs.2005.10.002
10.
Oberleithner
,
K.
,
Terhaar
,
S.
,
Rukes
,
L.
, and
Paschereit
,
C. O.
,
2013
, “
Why Non-Uniform Density Suppresses the Precessing Vortex Core
,”
ASME Turbo Expo 2013
,
San Antonio, TX
, June 3–7,
ASME
Paper No. GT2013-95509. 10.1115/GT2013-95509
11.
Danckwerts
,
P.
,
1953
, “
Continuous Flow Systems. Distribution of Residence Times
,”
Chem. Eng. Sci.
,
2
, pp.
1
13
.10.1016/0009-2509(53)80001-1
12.
Levenspiel
,
O.
,
1999
,
Chemical Reaction Engineering
, 3rd ed.,
John Wiley & Sons
,
New York
.
13.
Beér
,
J. M.
, and
Lee
,
K. B.
,
1965
, “
The Effect of Residence Time Distribution on the Performance and Efficiency of Combustors
,”
Sym. (Int.) Combust.
,
10
, pp.
1187
1202
.10.1016/S0082-0784(65)80255-7
14.
Lans
,
R. P. V. D.
, and
Glarborg
,
P.
,
1997
, “
Residence Time Distributions in a Cold, Confined Swirl Flow Implications for Chemical Engineering Combustion Modelling
,”
Chem. Eng. Sci.
,
52
(
16
), pp.
2743
2756
.10.1016/S0009-2509(97)00086-9
15.
Lacarelle
,
A.
,
Moeck
,
J. P.
,
Tenham
,
A.
, and
Paschereit
,
C. O.
,
2009
, “
Dynamic Mixing Model of a Premixed Combustor and Validation With Flame Response Measurements
,”
47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition
,
Orlando, FL
, January 5–8.
16.
Cheng
,
L.
, and
Spencer
,
A.
,
2012
, “
Residence Time Measurement of an Isothermal Combustor Flow Field
,”
Exp. Fluids
,
52
(
3
), pp.
647
661
.10.1007/s00348-011-1085-3
17.
Göckeler
,
K.
,
Terhaar
,
S.
,
Lacarelle
,
A.
, and
Paschereit
,
C. O.
,
2011
, “
Residence Time Distribution in a Swirl-Stabilized Combustor at Cold Conditions
,”
41st AIAA Fluid Dynamics Conference and Exhibit
,
Honolulu, HI
, June 26–30,
AIAA
Paper No. 2011-3585.10.2514/6.2011-3585
18.
Leuckel, W., 1967, “Swirl Intensities, Swirl Types and Energy Losses of Different Swirl Generating Devices,” International Flame Research Foundation, Ijmuiden, Netherlands, Technical Report No. G02/a/16.
19.
Escudier
,
M.
, and
Keller
,
J.
,
1985
, “
Recirculation in Swirling Flow: A Manifestation of Vortex Breakdown
,”
AIAA J.
,
23
(
1
), pp.
111
116
.10.2514/3.8878
20.
Terhaar
,
S.
,
Bobusch
,
B.
, and
Paschereit
,
C. O.
,
2012
, “
Effects of Outlet Boundary Conditions on the Reacting Flow Field in a Swirl-Stabilized Burner at Dry and Humid Conditions
,”
ASME J. Eng. Gas Turbines Power
,
134
(11), p. 111501.10.1115/1.4007165
21.
Roehle
,
I.
,
Schodl
,
R.
,
Voigt
,
P.
, and
Willert
,
C.
,
2000
, “
Recent Developments and Applications of Quantitative Laser Light Sheet Measuring Techniques in Turbomachinery Components
,”
Meas. Sci. Technol.
,
11
(
7
), pp.
1023
1035
.10.1088/0957-0233/11/7/317
22.
Voigt
,
P.
,
Schodl
,
R.
, and
Griebel
,
P.
,
1997
, “
Using the Laser Light Sheet Technique in Combustion Research
,”
90th Symposium of AGARD-PEP on Advanced Non-Intrusive Instrumentation for Propulsion Engines
, Brussels, Belgium, October 20–24.
23.
Findeisen
,
J.
,
Gnirß
,
M.
,
Damaschke
,
N.
,
Schiffer
,
H.
, and
Tropea
,
C.
,
2005
, “
2D—Concentration Measurements Based on Mie Scattering Using a Commercial PIV System
,”
6th International Symposium on Particle Image Velocimetry Pasadena
,
CA
, September 21–23.
24.
Freund
,
O.
,
Rehder
,
H.-J.
,
Schaefer
,
P.
, and
Roehle
,
I.
,
2011
, “
Experimental Investigations on Cooling Air Ejection at a Straight Turbine Cascade Using PIV and QLS
,”
ASME Turbo Expo 2011
,
Vancouver, BC, Canada
, June 6–10,
ASME
Paper No. GT2011-45296.10.1115/GT2011-45296
25.
Berkooz
,
G.
,
Holmes
,
P.
, and
Lumley
,
J. L.
,
1993
, “
The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
25
, pp.
539
575
.10.1146/annurev.fl.25.010193.002543
26.
Cala
,
C. E.
,
Fernandes
,
E. C.
,
Heitor
,
M. V.
, and
Shtork
,
S. I.
,
2005
, “
Coherent Structures in Unsteady Swirling Jet Flow
,”
Exp. Fluids
,
40
(
2
), pp.
267
276
.10.1007/s00348-005-0066-9
27.
Stöhr
,
M.
,
Sadanandan
,
R.
, and
Meier
,
W.
,
2009
, “
Experimental Study of Unsteady Flame Structures of an Oscillating Swirl Flame in a Gas Turbine Model Combustor
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
2925
2932
.10.1016/j.proci.2008.05.086
You do not currently have access to this content.