An experimental investigation and a burning-rate analysis have been performed on a production 1.4 liter compressed natural gas (CNG) engine fueled with methane-hydrogen blends. The engine features a pent-roof combustion chamber, four valves per cylinder, and a centrally located spark plug. The experimental tests have been carried out in order to quantify the cycle-to-cycle and the cylinder-to-cylinder combustion variation. Therefore, the engine has been equipped with four dedicated piezoelectric pressure transducers placed on each cylinder and located by the spark plug. At each test point, in-cylinder pressure, fuel consumption, induced air mass flow rate, pressure, and temperature at different locations on the engine intake and exhaust systems as well as “engine-out” pollutant emissions have been measured. The signals related to engine operation have been acquired by means of a National Instruments PXI-DAQ system and software developed in house. The acquired data have then been processed through a combustion diagnostic tool resulting from the integration of an original multizone thermodynamic model with a computer-aided design (CAD) procedure for the evaluation of the burned-gas front geometry. The diagnostic tool allows the burning velocities to be computed. The tests have been performed over a wide range of engine speeds, loads, and relative air-fuel ratios (up to the lean operation limit (LOL)). For stoichiometric operation, the addition of hydrogen to CNG has produced a brake-specific fuel combustion (bsfc) reduction ranging between 2% and 7% and a brake-specific total unburned hydrocarbons (bsTHCs) decrease up to 40%. These benefits have appeared to be even higher for lean mixtures. Hydrogen has shown to significantly enhance the combustion process, thus leading to a sensibly lower cycle-to-cycle variability. Hydrogen addition has generally resulted in extended operation up to relative air-to-fuel ratio (RAFR) = 1.8. Still, the LOL consistently varies depending on the considered cylinder.

References

1.
Bauer
,
C. G.
, and
Forest
,
T. W.
,
2001
, “
Effect of Hydrogen Addition on the Performance of Methane-Fueled Vehicles. Part I: Effect on S.I. Engine Performance
,”
Int. J. Hydrogen Energy
,
26
(
1
), pp.
55
70
.10.1016/S0360-3199(00)00067-7
2.
Nagalingam
,
B.
,
Duebel
,
F.
, and
Schmillen
,
K.
,
1983
, “
Performance Study Using Natural Gas, Hydrogen-Supplemented Natural Gas and Hydrogen in AVL Research Engine
,”
Int. J. Hydrogen Energy
,
8
(
9
), pp.
715
720
.10.1016/0360-3199(83)90181-7
3.
Wang
,
J.
,
Huang
,
Z.
,
Liu
,
B.
,
Zeng
,
K.
,
Yu
,
J.
,
Jiang
,
D.
,
2006
, “
Combustion and Emission Characteristics of a Direct-Injection Engine Fueled with Natural Gas/Hydrogen Blends Under Various Ignition Timings
,”
CSICE Trans.
,
24
(5), pp.
394
401
10.1021/ef0502453.
4.
Akansu
,
S. O.
,
Kahraman
,
N.
, and
Ceper
,
B.
,
2007
, “
Experimental Study on a Spark Ignition Engine Fuelled by Methane–Hydrogen Mixtures
,”
Int. J. Hydrogen Energy
,
32
(
13
), pp.
4279
4284
.10.1016/j.ijhydene.2007.05.034
5.
Das
,
L. M.
,
Gulati
,
R.
, and
Gupta
,
P. K.
,
2000
, “
A Comparative Evaluation of the Performance Characteristics of a Spark Ignition Engine Using Hydrogen and Compressed Natural Gas as Alternative Fuels
,”
Int. J. Hydrogen Energy
,
25
(
8
), pp.
783
793
.10.1016/S0360-3199(99)00103-2
6.
Ma
,
F. H.
, and
Wang
,
Y.
,
2008
, “
Study on the Extension of Lean Operation Limit Through Hydrogen Enrichment in a Natural Gas Spark-Ignition Engine
,”
Int. J. Hydrogen Energy
,
33
(
4
), pp.
1416
1424
.10.1016/j.ijhydene.2007.12.040
7.
Ma
,
F.
,
Liu
,
H.
,
Wang
,
Y.
,
Li
,
Y.
,
Wang
,
J.
, and
Zhao
,
S.
,
2008
, “
Combustion and Emission Characteristics of a Port-Injection HCNG Engine Under Various Ignition Timings
,”
Int. J. Hydrogen Energy
,
33
(
2
), pp.
816
822
.10.1016/j.ijhydene.2007.09.047
8.
Verhelst
,
S.
, and
Sheppard
,
C. G. W.
,
2009
, “
Multi-Zone Thermodynamic Modelling of Spark-Ignition Engine Combustion—An Overview
,”
Energy Convers. Manage.
,
50
(
5
), pp.
1326
1335
.10.1016/j.enconman.2009.01.002
9.
Zhang
,
Y.
,
Wu
,
J.
, and
Ishizuka
,
S.
,
2009
, “
Hydrogen Addition Effect on Laminar Burning Velocity, Flame Temperature and Flame Stability of a Planar and a Curved CH4–H2–Air Premixed Flame
,”
Int. J. Hydrogen Energy
,
34
(
1
), pp.
519
527
.10.1016/j.proci.2004.08.195
10.
Halter
,
F.
,
Chauveau
,
C.
,
Djeballi-Chaumeix
,
N.
, and
Gokalp
,
I.
,
2005
, “
Characterization of the Effects of Pressure and Hydrogen Concentration on Laminar Burning Velocities of Methane-Hydrogen-Air Mixtures
,”
Proceedings of the Combustion Institute
,
30
(1), pp.
201
208
.10.1016/j.proci.2004.08.195
11.
Bouvet
,
N.
,
Halter
,
F.
,
Chauveau
,
C.
, and
Yoon
,
Y.
,
2013
, “
On the Effective Lewis Number Formulations for Lean Hydrogen/Hydrocarbon/Air Mixtures
,”
Int. J. Hydrogen Energy
,
38
(
14
), pp.
5949
5960
.10.1016/j.ijhydene.2013.02.098
12.
Ma
,
F. H.
,
Wang
,
Y.
,
Liu
,
H. Q.
,
Li
,
Y.
,
Wang
,
J. J.
, and
Ding
,
S. F.
,
2008
, “
Effects of Hydrogen Addition on Cycle-by-Cycle Variations in a Lean Burn Natural Gas Spark-Ignition Engine
,”
Int. J. Hydrogen Energy
,
33
(
2
), pp.
823
831
.10.1016/j.ijhydene.2007.10.043
13.
Geiss
,
R.
,
Burkmyre
,
W.
, and
Lanigan
,
J.
,
1992
, “
Technical Highlights of the Dodge Compressed Natural Gas Ram Van/Wagon
,”
SAE
Technical Paper No. 921551.10.4271/921551
14.
Beck
,
N.
,
Johnson
,
W.
, and
Peterson
,
P.
,
1991
, “
Optimized E.F.I. for Natural Gas Fueled Engines
,”
SAE
Technical Paper No. 911650.10.4271/911650
15.
Hundleby
,
G.
, and
Thomas
,
J.
,
1990
, “
Low Emission Engines for Heavy-Duty Natural Gas-Powered Urban Vehicles—Development Experience
,”
SAE
Technical Paper No. 902068.10.4271/902068
16.
Bruch
,
K.
, 1991, “
The Caterpillar 3406 Spark Ignited Low Emission Natural Gas Engine
,” ASME Paper No. 91-ICE-5.
17.
Dimpelfeld
,
P.
, and
Mack
,
J.
,
1992
, “
Design and Testing of a Natural Gas Fueled 5.8 Liter Rotary Engine
,”
SAE
Technical Paper No. 920307.10.4271/920307
18.
Tunestål
,
P.
,
Christensen
,
M.
,
Einewall
,
P.
,
Andersson
,
T.
,
Johansson
,
B.
, and
Jönsson
,
O.
,
2002
, “
Hydrogen Addition for Improved Lean Burn Capability of Slow and Fast Burning Natural Gas Combustion Chambers
,”
SAE
Technical Paper No. 2002-01-2686.10.4271/2002-01-2686
19.
Munshi
,
S.
,
Nedelcu
,
C.
,
Harris
,
J.
,
Edwards
,
T.
,
Williams
,
J.
,
Lynch
,
F.
,
Frailey
,
M.
,
Dixon
,
G.
,
Wayne
,
S.
, and
Nine
,
R.
,
2004
, “
Hydrogen Blended Natural Gas Operation of a Heavy Duty Turbocharged Lean Burn Spark Ignition Engine
,”
SAE
Technical Paper No. 2004-01-2956.10.4271/2004-01-2956
20.
Catania
,
A. E.
,
Misul
,
D.
,
Spessa
,
E.
, and
Martorana
,
G.
,
2001
, “
Conversion of a Multivalve Gasoline Engine to Run on CNG
,”
SAE Trans.
,
109
, pp.
809
817
.10.4271/2000-01-0673
21.
Catania
,
A. E.
,
d'Ambrosio
,
S.
,
Mittica
,
A.
, and
Spessa
,
E.
,
2002
, “
Experimental Investigation of Fuel Consumption and Exhaust Emissions of a 16V Pent-Roof Engine Fueled by Gasoline and CNG
,”
SAE Trans.
,
110
, pp.
1213
1233
.10.4271/2001-01-1191
22.
d'Ambrosio
,
S.
,
Spessa
,
E.
, and
Vassallo
,
A.
,
2005
, “
Methods for Specific Emissions Evaluation in SI Engines Based on Calculation Procedures of Air-Fuel Ratio: Development, Assessment and Critical Comparison
,”
ASME J. Eng. Gas Turbines Power
,
127
(
4
), pp.
869
882
.10.1115/1.1852566
23.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
24.
d'Ambrosio
,
S.
,
Finesso
,
R.
, and
Spessa
E.
,
2011
, “
Calculation of Mass Emissions, Oxygen Mass Fraction and Thermal Capacity of the Inducted Charge in SI and Diesel Engines From Exhaust and Intake Gas Analysis
,”
Fuel
,
90
(
1
), pp.
152
166
.10.1016/j.fuel.2010.08.025
25.
Catania
,
A. E.
,
Misul
,
D.
,
Mittica
,
A.
, and
Spessa
,
E.
,
2003
, “
A Refined Two-Zone Heat Release Model for Combustion Analysis in SI Engines
,”
JSME Int. J.
, Ser. B,
46
(
1
), pp.
75
85
.10.1299/jsmeb.46.75
26.
Catania
,
A. E.
,
Misul
,
D.
,
Spessa
,
E.
, and
Vassallo
,
A.
,
2004
, “
A Diagnostic Tool for the Analysis of Heat Release, Flame Propagation Parameters and NO Formation in SI Engines
,” COMODIA 2004, Yokohama, Japan, August 2–5, JSME Paper No. 471.
27.
Catania
,
A. E.
,
Misul
,
D.
,
Spessa
,
E.
, and
Vassallo
,
A.
,
2005
, “
Analysis of Combustion Parameters and Their Relation to Operating Variables and Exhaust Emissions in an Upgraded Multivalve Bi-Fuel CNG SI Engine
,”
SAE Trans.
,
113
, pp.
682
703
.10.4271/2004-01-0983
28.
d'Ambrosio
,
S.
,
Misul
,
D.
,
Spessa
,
E.
, and
Vassallo
,
A.
,
2006
, “
Evaluation of Combustion Velocities in Bi-Fuel Engines by Means of an Enhanced Diagnostic Tool Based on a Quasi-Dimensional Multizone Model
,”
SAE Trans.
,
114
, pp.
472
489
.10.4271/2005-01-0245
29.
Fox
,
J.
,
Cheng
,
W.
, and
Heywood
,
J.
,
1993
, “
A Model for Predicting Residual Gas Fraction in Spark-Ignition Engines
,”
SAE
Technical Paper No. 931025.10.4271/931025
30.
Baratta
,
M.
,
d'Ambrosio
,
S.
,
Spessa
,
E.
, and
Vassallo
,
A.
,
2006
, “
Cycle-Resolved Detection of Combustion Start in SI Engines by Means of Different In-Cylinder Pressure Data Reduction Techniques
,”
ASME 2006 Internal Combustion Engine Division Spring Technical Conference (ICES2006)
, Aachen, Germany, May 8–10,
ASME
Paper No. ICES2006-1367.10.1115/ICES2006-1367
31.
Baratta
,
M.
, and
Misul
,
D.
,
2012
, “
Development and Assessment of a New Methodology for End of Combustion Detection and Its Application to Cycle Resolved Heat Release Analysis in IC Engines
,”
Appl. Energy
,
98
, pp.
174
189
.10.1016/j.apenergy.2012.03.020
32.
Woschni
,
G.
,
1967
, “
A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine
,”
SAE
Technical Paper No. 670931.10.4271/670931
33.
Woschni
,
G.
, and
Spinder
,
W.
,
1988
, “
Heat Transfer With Insulated Combustion Chamber Walls and Its Influence on the Performance of Diesel Engines
,”
ASME J. Eng. Gas Turbines Power
,
110
, pp.
482
502
.10.1115/1.3240146
34.
Huber
,
K.
,
Woschni
,
G.
, and
Zeilinger
,
K.
,
1990
, “
Investigations on Heat Transfer in Internal Combustion Engines Under Low Load and Motoring Conditions
,”
23rd FISITA Congress, Torino, Italy
, May 7–11, pp.
151
159
, SAE Paper No. Paper 905018.
35.
Baratta
,
M.
,
Catania
,
A. E.
,
Spessa
,
E.
, and
Vassallo
,
A.
,
2005
, “
Flame Propagation Speed in SI Engines: Modeling and Experimental Assessment
,”
ASME
Paper No. ICEF2005-1216, pp.
193
208
10.1115/ICEF2005-1216.
36.
Guezennec
,
Y.
, and
Hamama
,
W.
,
1999
, “
Two-Zone Heat Release Analysis of Combustion Data and Calibration of Heat Transfer Correlation in an I. C. Engine
,”
SAE
Technical Paper No. 1999-01-0218.10.4271/1999-01-0218
37.
Baratta
,
M.
,
d'Ambrosio
,
S.
,
Spessa
,
E.
, and
Vassallo
,
A.
,
2005
, “
Analysis of Cyclic Variability in a Bi-Fuel Engine by Means of a ‘Cycle-Resolved' Diagnostic Technique
,”
ASME
Paper No. ICEF2005-1214, pp.
175
191
.10.1115/ICEF2005-1214
38.
Verhelst
,
S.
, and
Wallner
,
T.
,
2009
, “
Hydrogen-Fueled Internal Combustion Engines
,”
Prog. Energy Combust. Sci.
,
35
(
6
), pp.
490
527
.10.1016/j.pecs.2009.08.001
39.
Ma
,
F.
,
Wang
,
Y.
,
Wang
,
M.
,
Liu
,
H.
,
Wang
,
J.
,
Ding
,
S.
, and
Zhao
,
S.
,
2008
, “
Development and Validation of a Quasi-Dimensional Combustion Model for SI Engines Fuelled by HCNG With Variable Hydrogen Fractions
,”
Int. J. Hydrogen Energy
,
33
(
18
), pp.
4863
4875
.10.1016/j.ijhydene.2008.06.068
40.
Hoekstra
,
R.
,
Van Blarigan
,
P.
, and
Mulligan
,
N.
,
1996
, “
NOx Emissions and Efficiency of Hydrogen, Natural Gas, and Hydrogen/Natural Gas Blended Fuels
,”
SAE
Technical Paper No. 961103.10.4271/961103
41.
Ma
,
F.
,
Wang
,
Y.
,
Liu
,
H.
,
Li
,
Y.
,
Wang
,
J.
, and
Zhao
,
S.
,
2007
, “
Experimental Study on Thermal Efficiency and Emission Characteristics of Lean Burn Natural Gas Engine
,”
Int. J. Hydrogen Energy
,
32
(
18
), pp.
5067
5075
.10.1016/j.ijhydene.2007.07.048
42.
Larsen
,
J. F.
, and
Wallace
,
J. S.
,
1997
, “
Comparison of Emissions and Efficiency of a Turbocharged Lean-Burn Natural Gas and Hythane-Fueled Engine
,”
ASME Trans.
,
119
, pp.
218
226
.10.1115/1.2826239
43.
Fonseca Thomé da Silva
,
A.
,
Oliveira Carvalho
,
L.
,
Cavalcante Cordeiro de Melo
,
T.
,
Troise Frank
,
M.
,
Isabel dos Reis
,
P. F.
, and
Ricchini Villalobos
,
P.
,
2008
, “
An Overview of Hydrogen Fuel for Vehicular Application
,”
SAE
Technical Paper No. 2008-36-0322.10.4271/2008-36-0322
44.
International Organization for Standardization, 2008, “Uncertainty of Measurement—Part 3: Guide to the Expression of Uncertainty in Measurement (GUM:1995)”, ISO, Geneva, Switzerland, ISO/IEC GUIDE 98-3:2008(E).
45.
Hu
,
Z.
,
Whitelaw
,
J.
, and
Vafidis
,
C.
,
1992
, “
Flame Propagation Studies in a Four-Valve Pentroof-Chamber Spark Ignition Engine
,”
SAE
Technical Paper No. 922321.10.4271/922321
You do not currently have access to this content.