Prediction of mutual interaction between flow, combustion, acoustic, and vibration phenomena occurring in a combustion chamber is crucial for the reliable operation of any combustion device. In this paper, this is studied with application to the combustion chamber of a gas turbine. Very dangerous for the integrity of a gas turbine structure can be the coupling between unsteady heat release by the flame, acoustic wave propagation, and liner vibrations. This can lead to a closed-loop feedback system resulting in mechanical failure of the combustor liner due to fatigue and fatal damage to the turbine. Experimental and numerical investigations of the process are performed on a pressurized laboratory-scale combustor. To take into account interaction between reacting flow, acoustics, and vibrations of a liner, the computational fluid dynamics (CFD) and computational structural dynamics (CSD) calculations are combined into one calculation process using a partitioning technique. Computed pressure fluctuations inside the combustion chamber and associated liner vibrations are validated with experiments performed at the state-of-the-art pressurized combustion setup. Three liner structures with different thicknesses are studied. The numerical results agree well with the experimental data. The research shows that the combustion instabilities can be amplified by vibrating walls. The modeling approach discussed in this paper allows to decrease the risk of the gas turbine failure by prediction, for given operating conditions, of the hazardous frequency at which the thermoacoustic instabilities appear.

References

1.
Tinga
,
T.
,
van Kampen
,
J. F.
,
De Jager
,
B.
, and
Kok
,
J. B. W.
,
2007
, “
Gas Turbine Combustor Liner Life Assessment Using a Combined Fluid/Structural Approach
,”
ASME J. Eng. Gas Turbines Power
,
129
(1), pp.
69
79
.10.1115/1.2360603
2.
Ducruix
,
S.
,
Schuller
,
T.
,
Durox
,
D.
, and
Candel
,
S.
,
2003
, “
Combustion Dynamics and Instabilities: Elementary Coupling and Driving Mechanisms
,”
J. Propuls. Power
,
19
(5), pp.
722
734
.10.2514/2.6182
3.
Lieuwen
,
T.
,
Torres
,
H.
,
Johnson
,
C.
, and
Zinn
,
B. T.
,
2001
, “
A Mechanism of Combustion Instability in Lean Premixed Gas Turbine Combustors
,”
ASME J. Eng. Gas Turbines Power
,
123
(1), pp.
182
189
.10.1115/1.1339002
4.
Hubbard
,
S.
, and
Dowling
,
A. P.
,
2001
, “
Acoustic Resonances of an Industrial Gas Turbine Combustion System
,”
ASME J. Eng. Gas Turbines Power
,
123
(4), pp.
766
773
.10.1115/1.1370975
5.
Rayleigh
,
J. W. S.
,
1878
, “
The Explanation of Certain Acoustic Phenomena
,”
Nature
,
18
, pp.
319
321
.10.1038/018319a0
6.
Chu
,
B. T.
,
1964
, “
On the Energy Transfer to Small Disturbances in Fluid Flow (Part 1)
,”
Acta Mech.
,
1
(
3
), pp.
215
234
.10.1007/BF01387235
7.
Dowling
,
A. P.
,
1995
, “
The Calculation of Thermoacoustic Oscillations
,”
J. Sound Vib.
,
180
(
4
), pp.
557
581
.10.1006/jsvi.1995.0100
8.
Lieuwen
,
T.
,
2003
, “
Combustion Driven Oscillations in Gas Turbines
,”
Turbomach. Int.
,
44
, pp.
16
18
.
9.
Cho
,
J.
, and
Lieuwen
,
T.
,
2005
, “
Laminar Premixed Flame Response to Equivalence Ratio Oscillations
,”
Combust. Flame
,
140
(1–2), pp.
116
129
.10.1016/j.combustflame.2004.10.008
10.
Hemchandra
,
S.
,
Peters
,
N.
, and
Lieuwen
,
T.
,
2011
, “
Heat Release Response of Acoustically Forced Turbulent Premixed Flames—Role of Kinematic Restoration
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
1609
1617
.10.1016/j.proci.2010.06.115
11.
Kim
,
K. T.
, and
Hochgreb
,
S.
,
2012
, “
Effects of Nonuniform Reactant Stoichiometry of Thermoacoustic Instability in a Lean-Premixed Gas Turbine Combustor
,”
Combust. Sci. Technol.
,
184
(5), pp.
1
21
.10.1080/00102202.2011.652788
12.
Komarek
,
T.
, and
Polifke
,
W.
,
2010
, “
Impact of Swirl Fluctuations on the Flame Response of a Perfectly Premixed Swirl Burner
,”
ASME J. Eng. Gas Turbines Power
,
132
(
6
), p.
061503
.10.1115/1.4000127
13.
Breard
,
C.
,
Sayma
,
A. I.
,
Vahdati
,
M.
, and
Imregun
,
M.
,
2002
, “
Aeroelasticity Analysis of an Industrial Gas Turbine Combustor Using a Simplified Combustion Model
,”
J. Fluids Struct.
,
16
(8), pp.
1111
1126
.10.1006/jfls.2002.0466
14.
Khatir
,
Z.
,
Pozarlik
,
A. K.
,
Cooper
,
R. K.
,
Watterson
,
J. W.
, and
Kok
,
J. B. W.
,
2008
, “
Numerical Study of Coupled Fluid-Structure Interaction for Combustion System
,”
Int. J. Numer. Methods Fluids
,
56
(8), pp.
1343
1349
.10.1002/fld.1701
15.
Huls
,
R. A.
,
Sengissen
,
A. X.
,
van der Hoogt
,
P. J. M.
,
Kok
,
J. B. W.
,
Poinsot
,
T.
, and
de Boer
,
A.
,
2007
, “
Vibration Prediction in Combustion Chambers by Coupling Finite Elements and Large Eddy Simulations
,”
J. Sound Vib.
,
304
(1–2), pp.
224
229
.10.1016/j.jsv.2007.02.027
16.
Dhopade
,
P.
,
Neely
,
A. J.
, and
Young
,
J.
,
2010
, “
Fluid-Structure Interaction of Gas Turbine Blades
,”
17th Australasian Fluid Mechanics Conference
, Auckland, New Zealand, December 5–9.
17.
Gorla
,
R. S. R.
,
Pai
,
S. S.
, and
Rusick
,
J. J.
,
2003
, “
Probabilistic Study of Fluid Structure Interaction
,”
Int. J. Eng. Sci.
,
41
(3–5), pp.
271
282
.10.1016/S0020-7225(02)00205-7
18.
Lieuwen
,
T. C.
,
1999
, “
Investigation of Combustion Instability Mechanism in Premixed Gas Turbines
,” Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA.
19.
Fannin
,
C. A.
,
2000
, “
Linear Modelling and Analysis of Thermoacoustic Instabilities in a Gas Turbine Combustor
,” Ph.D. thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA.
20.
Pozarlik
,
A. K.
, and
Kok
,
J. B. W.
,
2012
, “
Experimental Investigation and Numerical Prediction of Thermo-Acoustic Instabilities and Associated Liner Vibrations Induced by Turbulent Combustion in Gas Turbines
,”
50th AIAA Aerospace Sciences Meeting
, Nashville, TN, January 9–12,
AIAA
Paper No. 2012-0354.10.2514/6.2012-354
21.
Spectral Dynamic,
2001
, “
DSP-SigLab
User Guide,” Spectral Dynamic, Fremont, CA.
22.
ANSYS, 2007, “ANSYS CFX User's Guide, Release 11.0,” ANSYS, Inc., Canonsburg, PA.
23.
ANSYS, 2007, “ANSYS Coupled-Field Analysis Guide, Release 11.0,” ANSYS, Inc., Canonsburg, PA.
24.
Lighthill
,
M. J.
,
1952
, “
On Sound Generated Aerodynamically, I. General Theory
,”
Proc. R. Soc. London, A
,
211
(1107), pp.
564
587
.10.1098/rspa.1952.0060
25.
Lighthill
,
M. J.
,
1954
, “
On Sound Generated Aerodynamically II. Turbulence as a Source of Sound
,”
Proc. R. Soc. London, A
,
222
(1148), pp.
1
31
.10.1098/rspa.1954.0049
26.
Klein
,
S. A.
,
2000
, “
On the Acoustics of Turbulent Non-Premixed Flames
,” Ph.D. thesis, University of Twente, Enschede, Netherlands.
27.
Lefebvre
,
A. H.
,
1983
,
Gas Turbine Combustion
,
Hemisphere
, Bristol, PA.
28.
Poinsot
,
T.
, and
Veynante
,
D.
,
2005
,
Theoretical and Numerical Combustion
, 2nd ed.,
Edwards
,
Philadelphia
, PA.
29.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Bender
,
R.
,
2003
, “
A Scale-Adaptive Simulation Model for Turbulent Flow Predictions
,” 41st Aerospace Sciences Meeting and Exhibit, Reno, NV, January 6–9,
AIAA
Paper No. 2003-767.10.2514/6.2003-767
30.
Menter
,
F. R.
, and
Egorov
,
Y.
,
2005
,
“Scale-Adaptive Simulation für Technische Strömungen (Scale-Adaptive Simulation for Fluid Flow)
,” Technology Day 2005, ERCOFTAC Pilot Center Germany South, Stuttgart, Germany, September 30.
31.
Pozarlik
,
A. K.
, and
Kok
,
J. B. W.
,
2008
, “
Numerical Prediction of Interaction Between Combustion, Acoustics and Vibration in Gas Turbines
,” 155th Meeting of the Acoustical Society of America (Acoustics '08), Paris, June 29–July 4, pp.
2749
2754
.
32.
Rotta
,
J. C.
,
1972
,
Turbulente Strömungen: Eine Einführung in die Theorie und ihre Anwendung (Turbulent Flows: An Introduction to the Theory and Its Application)
, Teubner, Stuttgart, Germany.
33.
Blom
,
C.
,
2003
, “
Discontinuous Galerkin Method on Tetrahedral Elements for Aeroacoustics
,” Ph.D. thesis, University of Twente, Enschede, Netherlands.
34.
Tam
,
C. K. W.
,
1995
, “
Computational Aeroacoustics: Methods and Applications
,”
AIAA J.
,
33
(
10
), pp.
1788
1796
.10.2514/3.12728
35.
Felippa
,
C. A.
,
Park
,
K. C.
, and
Farhat
,
C.
,
2001
, “
Partitioned Analysis of Coupled Mechanical Systems
,”
Comput. Methods Appl. Mech. Eng.
,
190
(24–25), pp.
3247
3270
.10.1016/S0045-7825(00)00391-1
36.
Hermann
,
M. G.
, and
Steindorf
,
J.
,
2003
, “
Partitioned Strong Coupling Algorithms for Fluid-Structure Interaction
,”
Comput. Struct.
,
81
(8–11), pp.
805
812
.10.1016/S0045-7949(02)00409-1
37.
Farath
,
C.
,
Lesoinne
,
M.
, and
Le Tallec
,
P.
,
1998
, “
Load and Motion Transfer Algorithms for Fluid/Structure Interaction Problems With Non-Matching Discrete Interfaces: Momentum and Energy Conservation, Optimal Discretization and Application to Aeroelasticity
,”
Comput. Methods Appl. Mech. Eng.
,
157
(1–2), pp.
95
114
.10.1016/S0045-7825(97)00216-8
38.
De Boer
,
A.
,
Van Zuijlen
,
A. H.
, and
Bijl
,
H.
,
2007
, “
Review of Coupling Methods for Non-Matching Meshes
,”
Comput. Methods Appl. Mech. Eng.
,
196
(8), pp.
1515
1525
.10.1016/j.cma.2006.03.017
39.
Forsythe
,
N. A.
,
2006
, “
A Partitioned Approach to Fluid-Structure Interaction for Artificial Heart Valves
,” Ph.D. thesis, Queen's University Belfast, Belfast, UK.
40.
Hubner
,
B.
, and
Seidel
,
U.
,
2007
, “
Partitioned Solution to Strongly Coupled Hydroelastic Systems Arising in Hydro Turbine Design
,”
2nd IAHR International Meeting of the Workgroup on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems
, Timisoara, Romania, October 24–26, pp. 55–64.
41.
Hameyer
,
K.
,
Driesen
,
J.
,
De Gersem
,
H.
, and
Belmans
,
R.
,
1999
, “
The Classification of Coupled Field Problems
,”
IEEE Trans. Magn.
,
35
(
3
), pp.
1618
1621
.10.1109/20.767304
You do not currently have access to this content.