This article discusses the problem of exceeding amplitudes of mistuned structures caused by accelerated traveling waves type excitation, i.e., traveling waves with time variant frequencies. These waves cause resonance passages of, e.g., rotating structures. To calculate the resonance passage a semi-analytical solution is proposed. Thus, high accuracy is guaranteed. The topic of exceeding amplitudes is initially approached by studying a discrete lumped mass model with detuned parameters. It can be shown that under certain circumstances the maximum amplitude of the transient resonance passage is even higher than the maximum amplitude of the steady-state solution. To investigate this phenomenon on a real bladed disk, the number of degrees of freedom of the blisk is reduced using component mode synthesis (CMS). By applying the semi-analytical solution to the reduced model, the envelopes of the vibration during resonance passage can be calculated. Processing extensive parametric studies it can be pointed out under which circumstances the probability rises that higher maximum amplitudes occur during resonance passage compared to steady-state conditions.

References

1.
Lewis
,
F. M.
,
1932
, “
Vibration During Acceleration Through a Critical Speed
,”
Trans. ASME
,
54
(
3
), pp.
253
261
.
2.
Pöschl
,
T.
,
1933
, “
Das Anlaufen eines einfachen Schwingers
,”
Arch. Appl. Mech.
,
4
(
1
), pp.
98
102
.10.1007/BF02079865
3.
Weidenhammer
,
F.
,
1958
, “
Das Anlaufen eines ungedämpften Schwingers mit Massenkrafterregung
,”
J. Appl. Math. Mech./Z. Angew. Math. Mech.
,
38
(
7–8
), pp.
304
307
.10.1002/zamm.19580380730
4.
Goloskokov
,
E. G.
, and
Filippov
,
A.
,
1971
,
Instationäre Schwingungen mechanischer Systeme
,
Akademie-Verlag
,
Berlin
.
5.
Wauer
,
J.
,
1981
, “
Anlaufen einfacher Schwingungssysteme mit verteilten Parametern unter Kraft- und Massenkrafterregung
,”
J. Appl. Math. Mech./Z. Angew. Math. Mech.
,
61
(
1
), pp.
60
61
.10.1002/zamm.19810610109
6.
Landa
,
P. S.
,
2001
,
Regular and Chaotic Oscillations
,
Springer
,
Berlin
.
7.
Markert
,
R.
, and
Seidler
,
M.
,
2001
, “
Analytically Based Estimation of the Maximum Amplitude During Passage Through Resonance
,”
Int. J. Solids Struct.
,
38
(
10–13
), pp.
1975
1992
.10.1016/S0020-7683(00)00147-5
8.
Whitehead
,
D. S.
,
1966
, “
Effect of Mistuning on the Vibration of Turbo Machine Blades Induced by Wakes
,”
J. Mech. Eng. Sci.
,
8
(
1
), pp.
15
21
.10.1243/JMES_JOUR_1966_008_004_02
9.
Ewins
,
D. J.
,
1969
, “
The Effects of Detuning Upon the Forced Vibrations of Bladed Disks
,”
J. Sound Vib.
,
9
(
1
), pp.
65
79
.10.1016/0022-460X(69)90264-8
10.
Wagner
,
J.
,
1967
, “
Coupling of Turbomachine Blade Vibrations Through the Rotor
,”
ASME J. Eng. Gas Turbines Power
,
89
(
4
), pp.
502
512
.10.1115/1.3616718
11.
Dye
,
R. C.
, and
Henry
,
T. A.
,
1969
, “
Vibration Amplitudes of Compressor Blades Resulting From Scatter in Blade Natural Frequencies
,”
ASME J. Eng. Gas Turbines Power
,
91
(
3
), pp.
182
188
.10.1115/1.3574726
12.
Griffin
,
J. H.
, and
Hoosac
,
T. M.
,
1984
, “
Model Development and Statistical Investigation of Turbine Blade Mistuning
,”
ASME J. Vib. Acoust.
,
106
(
2
), pp.
204
210
.10.1115/1.3269170
13.
Craig
,
R. R.
, and
Bampton
,
M. C. C.
,
1968
, “
Coupling of Substructures for Dynamic Analyses
,”
AIAA J.
,
6
(
7
), pp.
1313
1319
.10.2514/3.4741
14.
Irretier
,
H.
,
1983
, “
Spectral Analysis of Mistuned Bladed Disk Assemblies by Component Mode Synthesis
,”
ASME 9th Conference on Mechanical Vibration and Noise
, Dearborn, MI, Sept. 11–14, pp.
115
125
.
15.
Bladh
,
J. R.
,
2001
, “
Efficient Predictions of the Vibratory Response of Mistuned Bladed Disks by Reduced Order Modeling
,” Ph.D. thesis, The University of Michigan, Ann Arbor, MI.
16.
Bladh
,
R.
,
Castanier
,
M. P.
, and
Pierre
,
C.
,
2001
, “
Component-Mode-Based Reduced Order Modeling Techniques for Mistuned Bladed Disks, Part I: Theoretical Models
,”
ASME J. Eng. Gas Turbines Power
,
123
(
1
), pp.
89
99
.10.1115/1.1338947
17.
Hohl
,
A.
,
Siewert
,
C.
,
Panning
,
L.
, and
Wallaschek
,
J.
,
2009
, “
A Substructure Based Reduced Order Model for Mistuned Bladed Disks
,”
ASME
Paper No. DETC2009-87459. 10.1115/DETC2009-87459
18.
Yang
,
M. T.
, and
Griffin
,
J. H.
,
2001
, “
A Reduced-Order Model of Mistuning Using a Subset of Nominal System Modes
,”
ASME J. Eng. Gas Turbines Power
,
123
(
4
), pp.
893
900
.10.1115/1.1385197
19.
Feiner
,
D. M.
, and
Griffin
,
J. H.
,
2002
, “
A Fundamental Model of Mistuning for a Single Family of Modes
,”
ASME J. Turbomach.
,
124
(
4
), pp.
597
605
.10.1115/1.1508384
20.
Feiner
,
D. M.
, and
Griffin
,
J. H.
,
2004
, “
Mistuning Identification of Bladed Disks Using a Fundamental Mistuning Model—Part I: Theory
,”
ASME J. Turbomach.
,
126
(
1
), pp.
150
158
.10.1115/1.1643913
21.
Ayers
,
J. P.
,
Feiner
,
D. M.
, and
Griffin
,
J. H.
,
2006
, “
A Reduced-Order Model for Transient Analysis of Bladed Disk Forced Response
,”
ASME J. Turbomach.
,
128
(
3
), pp.
466
473
.10.1115/1.2185675
22.
Kaneko
,
Y.
,
2013
, “
Study on Transient Vibration of Mistuned Bladed Disk Passing Through Resonance
,”
ASME
Paper No. GT2013-94052.10.1115/GT2013-94052
23.
Siewert
,
C.
, and
Stüer
,
H.
,
2014
, “
Transient Forced Response Analysis of Mistuned Steam Turbines Blades During Start-Up and Coast-Down
,”
ASME
Paper No. GT2014-25654.10.1115/GT2014-25654
24.
Panning
,
L.
,
2005
, “
Auslegung von Reibelementen zur Schwingungsdämpfung von Turbinenschaufeln
,” Ph.D. thesis, Universität Hannover, Hannover, Germany.
25.
Abramovich
,
M.
, and
Stegun
,
I. A.
,
1965
,
Handbook of Mathematical Functions
(Graphs and Mathematical Tables),
National Bureau of Standards Applied Mathematics
,
Washington, DC
.
26.
Gautschi
,
W.
,
1970
, “
Efficient Computation of the Complex Error Function
,”
SIAM J. Numer. Anal.
,
7
(
1
), pp.
187
198
.10.1137/0707012
27.
Gautschi
,
W.
,
1969
, “
Algorithm 363: Complex Error Function [S15]
,”
Commun. ACM
,
12
(
11
), pp.
634
638
.10.1145/363269.363618
28.
Poppe
,
G.
, and
Wijers
,
C. M. J.
,
1990
, “
More Efficient Computation of the Complex Error Function
,”
ACM Trans. Math. Software
,
16
(
1
), pp.
38
46
.10.1145/77626.77629
29.
Thomas
,
D. L.
,
1979
, “
Dynamics of Rotationally Periodic Structures
,”
Int. J. Numer. Methods Eng.
,
14
(
1
), pp.
81
102
.10.1002/nme.1620140107
You do not currently have access to this content.