The paper presents the use of different approaches to engine health assessment using on-wing data obtained over a year from an engine of a commercial short-range aircraft. The on-wing measurements are analyzed with three different approaches, two of which employ two models of different quality. Initially, the measurements are used as the sole source of information and are postprocessed utilizing a simple “model” (a table of corrected parameter values at different engine power levels) to obtain diagnostic information. Next, suitable engine models are built utilizing a semi-automated method which allows for quick and efficient creation of engine models adapted to specific data. Two engine models are created, one based on publicly available data and one adapted to engine specific on-wing “healthy” data. These models of different details are used in a specific diagnostic process employing model-based diagnostic methods, namely the probabilistic neural network (PNN) method and the deterioration tracking method. The results demonstrate the level of diagnostic information that can be obtained for this set of data from each approach (raw data, generic engine model or adapted to measurements engine model). A subsystem fault is correctly identified utilizing the diagnostic process combined with the engine specific model while the deterioration tracking method provides additional information about engine deterioration.

References

1.
Qiu
,
H.
,
Eklund
,
N.
,
Yan
,
W.
,
Bonissone
,
P.
,
Xue
,
F.
, and
Goebel
,
K.
,
2007
, “
Estimating Deterioration Level of Aircraft Engines
,”
ASME
Paper No. GT2007-27519. 10.1115/GT2007-27519
2.
Volponi
,
A. J.
,
2013
, “
Gas Turbine Engine Health Management, Past, Present and Future Trends
,”
ASME
Paper No. GT2013-96026. 10.1115/GT2013-96026
3.
Ebmeyer
,
C.
,
Friedrichs
,
J.
,
Wensky
,
T.
, and
Zachau
,
U.
,
2011
, “
Evaluation of Total Engine Performance Degradation Based on Modular Efficiencies
,”
ASME
Paper No. GT2011-45839. 10.1115/GT2011-45839
4.
Verbist
,
M. L.
,
Visser
,
W. P. J.
,
van Buijtenen
,
J. P.
, and
Duivis
,
R.
, “
Gas Path Analysis on KLM In-Flight Engine Data
,”
ASME
Paper No. GT2011-45625. 10.1115/GT2011-45625
5.
Ganguli
,
R.
,
2001
, “
A Fuzzy Logic Intelligent System for Gas Turbine Module and System Fault Isolation
,” XV International Symposium of Air Breathing Engines (ISABE), Bangalore, India, Sept. 2–7, ISABE Paper No. 2001-1112.
6.
Mathioudakis
,
K.
,
Kamboukos
,
Ph.
, and
Stamatis
,
A.
,
2002
, “
Turbofan Performance Deterioration Tracking Using Nonlinear Models and Optimization Techniques
,”
ASME J. Turbomach.
,
124
(
4
), pp.
580
587
10.1115/1.1512678
7.
Dewallef
,
P.
,
Romessis
,
C.
,
Léonard
,
O.
, and
Mathioudakis
,
K.
,
2006
, “
Combining Classification Techniques With Kalman Filters for Aircraft Engine Diagnostics
,”
ASME J. Eng. Gas Turbines Power
,
128
(
2
), pp.
281
287
.10.1115/1.2056507
8.
Simon
,
D. L.
,
Borguet
,
S.
,
Léonard
,
O.
, and
Zhang
,
X.
,
2013
, “
Aircraft Engine Gas Path Diagnostic Methods: Public Benchmarking Results
,”
ASME
Paper No. GT2013-95077. 10.1115/GT2013-95077
9.
Li
,
Y. G.
,
2002
, “
Performance-Analysis-Based Gas Turbine Diagnostics: A Review
,”
Proc. Inst. Mech. Eng., Part A
,
216
(
5
), pp.
363
377
.10.1243/095765002320877856
10.
Wensky
,
T.
,
Winkler
,
L.
, and
Friedrichs
,
J.
,
2010
, “
Environmental Influences on Engine Performance Degradation
,”
ASME
Paper No. GT2010-22748. 10.1115/GT2010-22748
11.
Mathioudakis
,
K.
, and
Tsalavoutas
,
A.
,
2002
, “
Uncertainty Reduction in Gas Turbine Performance Diagnostics by Accounting for Humidity Effects
,”
ASME J. Eng. Gas Turbines Power
,
124
(
4
), pp.
801
808
.10.1115/1.1470485
12.
AGARD
,
1995
, “
Recommended Practices for the Assessment of the Effects of Atmospheric Water Ingestion on the Performance and Operability of Gas Turbine Engines
,”
North Atlantic Treaty Organization
, Research and Technology Organisation, Neuilly-sur-Seine, France, Document No. AGARD-AR-332.
13.
Verbist
,
M. L.
,
Visser
,
W. P. J.
, and
van Buijtenen
,
J. P.
,
2013
, “
Experience With Gas Path Analysis for On-Wing Turbofan Condition Monitoring
,”
ASME
Paper No. GT2013-95739. 10.1115/GT2013-95739
14.
Volponi
,
A. J.
,
1999
, “
Gas Turbine Parameter Correction
,”
ASME J. Eng. Gas Turbines Power
,
121
(
4
), pp.
613
621
.10.1115/1.2818516
15.
DePold
,
H. R.
, and
Gass
,
F. D.
,
1999
, “
The Application of Expert Systems and Neural Networks to Gas Turbine Prognostics and Diagnostics
,”
ASME J. Eng. Gas Turbines Power
,
121
(
4
), pp.
607
612
.10.1115/1.2818515
16.
EAI,
2014
, “
EcosimPro/PROOSIS System Modelling and Simulation Software
,” Empresarios Agrupados Internactional, Madrid, Spain, http://www.proosis.com/
17.
Alexiou
,
A.
, and
Tsalavoutas
,
A.
,
2011
,
Introduction to Gas Turbine Modelling With PROOSIS
, 1st ed.,
Empresarios Agrupados Internacional (EAI) S.A.
,
Madrid, Spain
.
18.
Alexiou
,
A.
,
Baalbergen
,
E. H.
,
Kogenhop
,
O.
,
Mathioudakis
,
K.
, and
Arendsen
,
P.
,
2007
, “
Advanced Capabilities for Gas Turbine Engine Performance Simulations
,”
ASME
Paper No. GT-2007-27086. 10.1115/GT-2007-27086
19.
Pilet
,
J.
,
Lecordix
,
J.-L.
,
Garcia-Rosa
,
N.
,
Barènes
,
R.
, and
Lavergne
,
G.
,
2011
, “
Towards a Fully Coupled Component Zooming Approach in Engine Performance Simulation
,”
ASME
Paper No. GT2011-46320. 10.1115/GT2011-46320
20.
Roumeliotis
,
I.
,
Aretakis
,
N.
,
Alexiou
,
A.
,
Sieros
,
G.
, and
Mathioudakis
,
K.
,
2014
, “
Integration and Simulation of Rain Ingestion Effects in Engine Performance Simulations
,”
ASME
Paper No. GT2014-26556. 10.1115/GT2014-26556
21.
Nelder
,
J. A.
, and
Mead
,
R.
,
1965
, “
A Simplex Method for Function Minimization
,”
Comput. J.
,
7
(
4
), pp.
308
313
.10.1093/comjnl/7.4.308
22.
EASA
,
2014
, “
ICAO Aircraft Engine Emissions Databank
,” European Aviation Safety Agency, Cologne, Germany, http://easa.europa.eu/document-library/icao-aircraft-engine-emissions-databank
23.
Mathioudakis
,
K.
, and
Romessis
,
C.
,
2004
, “
Probabilistic Neural Networks for Validation of On-Board Jet Engine Data
,”
Proc. Inst. Mech. Eng., Part G
,
218
(
1
), pp.
59
72
.10.1177/095441000421800105
24.
Stamatis
,
A.
,
Mathioudakis
,
K.
, and
Papailiou
,
K. D.
,
1990
, “
Adaptive Simulation of Gas Turbine Performance
,”
ASME J. Eng. Gas Turbines Power
,
112
(
2
), pp.
168
175
.10.1115/1.2906157
25.
Bose
,
N. K.
, and
Liang
,
P.
,
1996
,
Neural Network Fundamentals With Graphs, Algorithms and Applications
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.