This paper discusses the importance of the unsteady interaction in transonic turbomachinery stages. Although the flow in a turbomachine is inherently unsteady, most current calculations for routine design work exploit the steady state assumption. In fact, unsteady flow effects are often taken into account for mechanical integrity checks, such as blade flutter or forced response, or heat transfer issues associated with circumferential nonuniformities, whereas steady state calculations are usually selected for the aerodynamic design. In this work, some cases are discussed in which significant departures are found between steady and time-averaged results, and the basic fluid mechanisms responsible for them are examined. Finally, a current perspective of unsteady computational fluid dynamics (CFD) calculations for the aerodynamic design is given.

References

1.
Arnone
,
A.
,
1994
, “
Viscous Analysis of Three-Dimensional Rotor Flow Using a Multigrid Method
,”
ASME J. Turbomach.
,
116
(
3
), pp.
435
445
.10.1115/1.2929430
2.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
,
1994
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
La Rech. Aérosp.
,
1
, pp.
5
21
.
3.
Wilcox
,
D. C.
,
2008
, “
Formulation of the k–ω Turbulence Model Revisited
,”
AIAA J.
,
46
(
11
), pp.
2823
2838
.10.2514/1.36541
4.
Menter
,
F. R.
,
1994
, “
Two-Equations Eddy Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
5.
Arnone
,
A.
,
Liou
,
M. S.
, and
Povinelli
,
L. A.
,
1992
, “
Navier–Stokes Solution of Transonic Cascade Flow Using Non-Periodic C-Type Grids
,”
J. Propul. Power
,
8
(
2
), pp.
410
417
.10.2514/3.23493
6.
Arnone
,
A.
,
Carnevale
,
E.
, and
Marconcini
,
M.
,
1997
, “
Grid Dependency Study for the NASA Rotor 37 Compressor Blade
,”
ASME
Paper No. 97-GT-384.
7.
Pacciani
,
R.
,
Rubechini
,
F.
,
Arnone
,
A.
, and
Lutum
,
E.
,
2012
, “
Calculation of Steady and Periodic Unsteady Blade Surface Heat Transfer in Separated Transitional Flow
,”
ASME J. Turbomach.
,
134
(
6
), p.
061037
.10.1115/1.4006312
8.
Schmitt
,
S.
,
Eulitz
,
F.
,
Wallscheid
,
L.
,
Arnone
,
A.
, and
Marconcini
,
M.
,
2001
, “
Evaluation of Unsteady CFD Methods by Their Application to a Transonic Propfan Stage
,”
ASME
Paper No. 2001-GT-0310.10.1115/2001-GT-0310
9.
Bonaiuti
,
D.
,
Arnone
,
A.
,
Hah
,
C.
, and
Hayami
,
H.
,
2002
, “
Development of Secondary Flow Field in a Low Solidity Diffuser in a Transonic Centrifugal Compressor Stage
,”
ASME
Paper No. GT2002-30371.10.1115/GT2002-30371
10.
Marconcini
,
M.
,
Rubechini
,
F.
,
Arnone
,
A.
, and
Ibaraki
,
S.
,
2010
, “
Numerical Analysis of the Vaned Diffuser of a Transonic Centrifugal Compressor
,”
ASME J. Turbomach.
,
132
(
4
), p.
041012
.10.1115/1.2988481
11.
Marconcini
,
M.
,
Rubechini
,
F.
,
Arnone
,
A.
,
Scotti Del Greco
,
A.
, and
Biagi
,
R.
,
2012
, “
Aerodynamic Investigation of a High Pressure Ratio Turbo-Expander for Organic Rankine Cycle Applications
,”
ASME
Paper No. GT2012-69409. 10.1115/GT2012-69409
12.
Rubechini
,
F.
,
Marconcini
,
M.
,
Arnone
,
A.
,
Scotti Del Greco
,
A.
, and
Biagi
,
R.
,
2013
, “
Special Challenges in the Computational Fluid Dynamics Modeling of Transonic Turbo-Expanders
,”
ASME J. Eng. Gas Turbines Power
,
135
(
10
), p.
102701
.10.1115/1.4025034
13.
Denton
,
J. D.
,
1992
, “
The Calculation of Three-Dimensional Viscous Flow Through Multistage Turbomachines
,”
ASME J. Turbomach.
,
114
(
1
), pp.
18
26
.10.1115/1.2927983
14.
Giles
,
M. B.
,
1988
, “
UNSFLO: A Numerical Method for Unsteady Inviscid Flow in Turbomachinery
,” MIT, Cambridge, MA, GTL Report No. 195.
15.
Pianko
,
M.
, and
Wazelt
,
F.
,
1982
, “
Propulsion and Energetics Panel Working Group 14 on Suitable Averaging Techniques in Non-Uniform Internal Flows
,” Advisory Group for Aerospace Research and Development, Neuilly Sur Seine, France, AGARD Advisory Report No 182.
16.
Wyss
,
M. L.
,
Chima
,
R. V.
, and
Tweedt
,
D. L.
,
1993
, “
Averaging Techniques for Steady and Unsteady Calculation of a Transonic Fan Stage
,”
AIAA
Paper No. 93-3065.10.2514/6.1993-3065
17.
Cumpsty
,
N. A.
, and
Horlock
,
J. H.
,
2006
, “
Averaging Nonuniform Flow for a Purpose
,”
ASME J. Turbomach.
,
120
(
1
), pp.
120
129
.10.1115/1.2098807
18.
Suresh
,
A.
,
Hofer
,
D. C.
, and
Tangirala
,
V. E.
,
2012
, “
Turbine Efficiency for Unsteady, Periodic Flows
,”
ASME J. Turbomach.
,
134
(
3
), p.
034501
.10.1115/1.4003246
19.
Holmes
,
D. G.
,
2008
, “
Mixing Planes Revisited: A Steady Mixing Plane Approach Designed to Combine High Levels of Conservation and Robustness
,”
ASME
Paper No. GT2008-51296.10.1115/GT2008-51296
20.
Denton
,
J.
,
2010
, “
Some Limitations of Turbomachinery CFD
,”
ASME
Paper No. GT2010-22540. 10.1115/GT2010-22540
21.
Arnone
,
A.
,
Liou
,
M. S.
, and
Povinelli
,
L. A.
,
1995
, “
Integration of Navier–Stokes Equations Using Dual Time Stepping and a Multigrid Method
,”
AIAA J.
,
33
(
6
), pp.
985
990
.10.2514/3.12518
22.
Jameson
,
A.
,
1991
, “
Time Dependent Calculations Using Multigrid With Applications to Unsteady Flows Past Airfoils and Wings
,”
AIAA
Paper No. 91-1596.10.2514/6.1991-1596
23.
Arnone
,
A.
, and
Pacciani
,
R.
,
1996
, “
Rotor–Stator Interaction Analysis Using the Navier–Stokes Equations and a Multigrid Method
,”
ASME J. Turbomach.
,
118
(
4
), pp.
679
689
.10.1115/1.2840923
24.
Giovannini
,
M.
,
Marconcini
,
M.
,
Arnone
,
A.
, and
Bertini
,
F.
,
2014
, “
Evaluation of Unsteady Computational Fluid Dynamics Models Applied to the Analysis of a Transonic High-Pressure Turbine Stage
,”
Proc. Inst. Mech. Eng., Part A–J. Power Energy
,
228
(
7
), pp.
813
824
.10.1177/0957650914536170
25.
Van Zante
,
D. E.
,
Chen
,
J. P.
,
Hathaway
,
T. H.
, and
Randall
,
C.
,
2008
, “
The Influence of Compressor Blade Row Interaction Modeling on Performance Estimates From Time-Accurate, Multistage, Navier–Stokes Simulations
,”
ASME J. Turbomach.
,
130
(
1
), p.
011009
.10.1115/1.2775486
26.
de la Loma
,
A.
,
Paniagua
,
G.
,
Verrastro
,
D.
, and
Adami
,
P.
,
2007
, “
Transonic Turbine Stage Heat Transfer Investigation in Presence of Strong Shocks
,”
ASME
Paper No. GT2007-27101. 10.1115/GT2007-27101
27.
Sieverding
,
C. H.
,
1985
, “
Axial Turbine Performance Prediction Methods
,”
Thermodynamics and Fluid Mechanics of Turbomachinery
(NATO ASI Series 639 E, No. 97A, Vol.
1
),
Nijhoff, Dordrecht
,
The Netherlands
, pp.
737
784
.
28.
Denton
,
J. D.
,
1993
, “
The 1993 IGTI Scholar Lecture—Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.10.1115/1.2929299
29.
Miller
,
R. J.
,
Moss
,
R. W.
,
Ainsworth
,
R. W.
, and
Harvey
,
N. W.
,
2003
, “
Wake, Shock, and Potential Field Interactions in a 1.5 Stage Turbine—Part I: Vane–Rotor and Rotor–Vane Interaction
,”
ASME J. Turbomach.
,
125
(
1
), pp.
33
39
.10.1115/1.1508386
30.
Denton
,
J. D.
, and
Dawes
,
W. N.
,
1999
, “
Computational Fluid Dynamics for Turbomachinery Design
,”
Proc. Inst. Mech. Eng., Part C
,
213
(
2
), pp.
107
124
.10.1243/0954406991522211
31.
Arnone
,
A.
, and
Pacciani
,
R.
,
1998
, “
IGV–Rotor Interaction Analysis in a Transonic Compressor Using the Navier–Stokes Equations
,”
ASME J. Turbomach.
,
120
(
1
), pp.
143
155
.10.1115/1.2841376
32.
Prasad
,
A.
,
2003
, “
Evolution of Upstream Propagating Shock Waves From a Transonic Compressor Rotor
,”
ASME J. Turbomach.
,
125
(
1
), pp.
133
240
.10.1115/1.1516813
You do not currently have access to this content.