Control and detection of misfire are an essential part of on-board diagnosis (OBD) of modern spark ignition (SI) engines. This study proposes a novel model-based technique for misfire detection for a multicylinder SI engine. The new technique uses a dynamic engine model to determine mean output power, which is then used to calculate a new parameter for misfire detection. The new parameter directly relates to combustion period and is sensitive to engine speed fluctuations caused by misfire. The new technique requires only measured engine speed data and is computationally viable for use in a typical engine control unit (ECU). The new technique is evaluated experimentally on a four-cylinder 1.6-l SI engine. Three types of misfire are studied including single, continuous, and multiple-event. The steady-state and transient experiments were done for a wide range of engine speeds and engine loads, using a vehicle chassis dynamometer and on-road vehicle testing. The validation results show that the new technique is able to detect all three types of misfire with up to 94% accuracy during steady-state conditions. The new technique is augmented with a compensation factor to improve the accuracy of the technique for transient operations. The resulting technique is shown to be capable of detecting misfire during both transient and steady-state engine conditions.

References

1.
Heywood
,
J. B.
,
1989
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
2.
Luján
,
J. M.
,
Bermúdez
,
V.
,
Guardiola
,
C.
, and
Abbad
,
A.
,
2010
, “
A Methodology for Combustion Detection in Diesel Engines Through In-Cylinder Pressure Derivative Signal
,”
Mech. Syst. Signal Process.
,
24
(
7
), pp.
2261
2275
.10.1016/j.ymssp.2009.12.012
3.
Pyari
,
F.
,
Luján
,
J. M.
,
Martín
,
J.
, and
Abbad
,
A.
,
2010
, “
Digital Signal Processing of In-Cylinder Pressure for Combustion Diagnosis of Internal Combustion Engines
,”
Mech. Syst. Signal Process.
,
24
(
6
), pp.
1767
1784
.10.1016/j.ymssp.2009.12.011
4.
Sellnau
,
M. C.
,
Matekunas
,
F. A.
, and
Battiston
,
P. A.
,
2000
, “
Cylinder-Pressure-Based Engine Control Using Pressure-Ratio-Management and Low-Cost Non-Intrusive Cylinder Pressure Sensors
,”
SAE
Paper No. 2000-01-0932.10.4271/2000-01-0932
5.
Fan
,
Q.
,
Bian
,
J.
,
Lu
,
H.
,
Tong
,
S.
, and
Li
,
L.
,
2014
, “
Misfire Detection and Re-Ignition Control by Ion-Current Signal Feedback During Cold Start in Two-Stage Direct-Injection Engines
,”
Int. J. Engine Res.
,
15
(1), pp.
37
47
.10.1177/1468087412458099
6.
Vandyne
,
E. A.
,
Burchmyer
,
C. L.
,
Wahl
,
A. M.
, and
Funaioli
,
A. E.
,
2000
, “
Misfire Detection From Ionization Feedback Utilizing the Smart-Fire-Plasma Ignition Technology
,”
SAE
Paper No. 2000-01-1377.10.4271/2000-01-1377
7.
Dong
,
G.
,
Yu
,
S.
,
Li
,
L.
, and
Univ
,
T.
,
2009
, “
Misfiring Control in Current Cycle at Engine Start Employing Ion Sensing Technology
,”
SAE
Technical Paper No. 2009-01-2713.10.4271/2009-01-2713
8.
Mayhew
,
C. G.
,
Knierin
,
K. L.
,
Chaturvedi
,
N. A.
,
Park
,
S.
,
Ahmed
,
J.
, and
Kojic
,
A.
,
2009
, “
Reduced Order Modeling for Studying and Controlling Misfire in Four-Stroke HCCI Engines
,”
48th IEEE Conference on Decision and Control and 28th Chinese Control Conference
(
CDC/CCC 2009
), Shanghai, Dec. 16–18, pp.
5194
5199
.10.1109/CDC.2009.5400597
9.
Wang
,
Y.
, and
Zhou
,
L.
,
2003
, “
Investigation of the Detection of Knock and Misfire of a Spark Ignition Engine With the Ionic-Current-Method
,”
Proc. Inst. Mech. Eng., Part D
,
217
(
7
), pp.
617
621
.10.1243/095440703322114997
10.
Gazis
,
A.
,
Panousakis
,
D.
,
Chen
,
R.
, and
Chen
,
W. H.
,
2006
, “
Computationally Inexpensive Methods of Ion Current Signal Manipulation for Predicting the Characteristics of Engine In-Cylinder Pressure
,”
Int. J. Engine Res.
,
7
(
3
), pp.
271
282
.10.1243/14680874JER04005
11.
PierniKarski
,
D.
, and
Hunicz
,
J.
,
2000
, “
Investigation of Misfire Nature Using Optical Combustion Sensor in a SI Automotive Engine
,”
SAE
Technical Paper No. 2000-01-0549.10.4271/2000-01-0549
12.
Peterson
,
B.
,
Reuss
,
D. L.
, and
Sick
,
V.
,
2011
, “
High-Speed Imaging Analysis of Misfires in a Spray-Guided Direct Injection Engine
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
3089
3096
.10.1016/j.proci.2010.07.079
13.
Tornatore
,
C.
,
Sementa
,
P.
, and
Merola
,
S. S.
,
2011
, “
Optical Investigations of the Early Combustion Phase in Spark Ignition Boosted Engines
,”
Proc. Inst. Mech. Eng., Part D
,
225
(
6
), pp.
787
800
.10.1177/2041299110394915
14.
Sick
,
V.
,
2012
, “
High Speed Imaging in Fundamental and Applied Combustion Research
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3509
3530
.10.1016/j.proci.2012.08.012
15.
Ye
,
J.
,
2009
, “
Application of Extension Theory in Misfire Fault Diagnosis of Gasoline Engines
,”
Expert Syst. Appl.
,
36
(
2
), pp.
1217
1221
.10.1016/j.eswa.2007.11.012
16.
Tamura
,
M.
,
Saito
,
H.
,
Murata
,
Y.
,
Kokubu
,
K.
, and
Morimoto
,
S.
,
2011
, “
Misfire Detection on Internal Combustion Engines Using Exhaust Gas Temperature With Low Sampling Rate
,”
Appl. Therm. Eng.
,
31
(
17–18
), pp.
4125
4131
.10.1016/j.applthermaleng.2011.08.026
17.
Chiavola
,
O.
,
2003
, “
Combustion Anomalies Detection in SI Engines From Exhaust Pressure Signal Processing
,”
Proc. Inst. Mech. Eng., Part A
,
217
(
5
), pp.
537
546
.10.1243/095765003322407584
18.
Chung
,
Y.
,
Bae
,
C.
,
Choi
,
S.
, and
Yoon
,
K.
,
1999
, “
Application of a Wide Range Oxygen Sensor for the Misfire Detection
,”
SAE
Paper No. 1999-01-1485.10.4271/1999-01-1485
19.
Chung
,
Y.
,
Kim
,
H.
,
Choi
,
S.
, and
Bae
,
C.
,
2000
, “
Flow Characteristics of Misfired Gas in the Exhaust Manifold of a Spark Ignition Engine
,”
Proc. Inst. Mech. Eng., Part D
,
214
(
4
), pp.
373
381
.10.1243/0954407001527691
20.
Lai
,
S. H.-Y.
,
1993
, “
Engine System Diagnosis Using Vibration Data
,”
Comput. Ind. Eng.
,
25
(
1
), pp.
135
138
.10.1016/0360-8352(93)90239-T
21.
Vulli
,
S.
,
Dunne
,
J. F.
,
Potenza
,
R.
, and
Richardson
,
D.
,
2009
, “
Time-Frequency Analysis of Single-Point Engine-Block Vibration Measurements for Multiple Excitation Event Identification
,”
J. Sound Vib.
,
321
(
3–5
), pp.
1129
1143
.10.1016/j.jsv.2008.10.011
22.
Hu
,
C.
,
Li
,
A.
, and
Zhao
,
X.
,
2011
, “
Multivariate Statistical Analysis Strategy for Multiple Misfire Detection in Internal Combustion Engines
,”
Mech. Syst. Signal Process.
,
25
(
2
), pp.
694
703
.10.1016/j.ymssp.2010.08.010
23.
Douglas
,
R. M.
,
Steel
,
J. A.
,
Reuben
,
R. L.
, and
Fog
,
T. L.
,
2006
, “
On-Line Power Estimation of Large Diesel Engines Using Acoustic Emission and Instantaneous Crankshaft Angular Velocity
,”
Int. J. Engine Res.
,
7
(
5
), pp.
399
410
.10.1243/14680874JER00206
24.
Kiencke
,
U.
,
1999
, “
Engine Misfire Detection
,”
Control Eng. Pract.
,
7
(
2
), pp.
203
208
.10.1016/S0967-0661(98)00150-6
25.
Ball
,
J. K.
,
Bowe
,
M. J.
,
Stone
,
C.
, and
McFadden
,
P.
,
2000
, “
Torque Estimation and Misfire Detection Using Block Angular Acceleration
,”
SAE
Technical Paper No. 2000-01-0560.10.4271/2000-01-0560
26.
Barelli
,
L.
,
Bidini
,
G.
,
Burrati
,
C.
, and
Mariani
,
R.
,
2009
, “
Diagnosis of Internal Combustion Engine Through Vibration and Acoustic Pressure Non-Intrusive Measurements
,”
Appl. Therm. Eng.
,
29
(
8–9
), pp.
1707
1713
.10.1016/j.applthermaleng.2008.07.025
27.
Tinaut
,
F. V.
,
Melgar
,
A.
,
Laget
,
H.
, and
Dominguez
,
J. I.
,
2007
, “
Misfire and Compression Fault Detection Through the Energy Model
,”
Mech. Syst. Signal Process.
,
21
(
3
), pp.
1521
1535
.10.1016/j.ymssp.2006.05.006
28.
Stotsky
,
A. A.
,
2007
, “
Statistical Engine Misfire Detection
,”
Proc. Inst. Mech. Eng., Part D
,
221
(
5
), pp.
641
649
.10.1243/09544070JAUTO442
29.
Ponti
,
F.
,
2008
, “
Development of a Torsional Behavior Powertrain Model for Multiple Misfire Detection
,”
ASME J. Eng. Gas Turbines Power
,
130
(
2
), p.
022803
.10.1115/1.2770486
30.
Chen
,
B. C.
,
Wu
,
Y. Y.
, and
Hsieh
,
F. C.
,
2005
, “
Estimation of Engine Rotational Dynamics Using a Closed-Loop Estimator With Stroke Identification for Engine Management Systems
,”
Proc. Inst. Mech. Eng., Part D
,
219
(
12
), pp.
1391
1405
.10.1243/095440705X35062
31.
Boudaghi
,
M.
,
Shahbakhti
,
M.
, and
Jazayeri
,
S. A.
,
2013
, “
A New Physics-Based Misfire Detection Technique for a SI Engine
,”
ASME Internal Combustion Engine Division Fall Technical Conference
,
ASME
Paper No. ICEF2013-19096. 10.1115/ICEF2013-19096
32.
Klenk
,
M.
,
Moser
,
W.
,
Mueller
,
W.
, and
Wimmer
,
W.
,
1993
, “
Misfire Detection by Evaluating Crankshaft Speed: A Means to Comply With OBDII
,”
SAE
Paper No. 930399.10.4271/930399
33.
Wang
,
Y.
, and
Chu
,
F.
,
2005
, “
Application of Non-Linear Observers to On-Line Estimation of Indicated Torque in Automotive Engines
,”
Proc. Inst. Mech. Eng., Part D
,
219
(
1
), pp.
65
75
.10.1243/095440705X6434
34.
Gu
,
F.
,
Jacob
,
P. J.
, and
Ball
,
A. D.
,
1999
, “
Non-Parametric Models in the Monitoring of Engine Performance and Condition—Part 2: Non-Intrusive Estimation of Diesel Engine Cylinder Pressure and Its Use in Fault Detection
,”
Proc. Inst. Mech. Eng., Part D
,
213
(
2
), pp.
135
143
.10.1243/0954407991526757
35.
McDowell
,
N.
,
McCullough
,
G.
,
Wang
,
X.
,
Kruger
,
U.
, and
Irwin
,
G. W.
,
2007
, “
Fault Diagnosis for Internal Combustion Engines: Currently and Future Techniques
,” SAE Technical Paper No. 2007-01-1603.
36.
Mohammadpour
,
J.
,
Francheck
,
M.
, and
Grigoriadis
,
K.
,
2012
, “
A Survey on Diagnostic Methods for Automotive Engines
,”
Int. J. Engine Res.
,
13
(
1
), pp.
41
64
.10.1177/1468087411422851
37.
Boudaghi
,
Kh.-N. M.
,
2011
, “
The Effect of Distances Between the Vehicles on Their Fuel Consumptions in Highways
,”
Proceedings of the 19th Annual Conference on Mechanical Engineering
, Birjand, Iran, May 10–12, Paper No. ISME2011-0984.
You do not currently have access to this content.