Diesel engines are widely used due to their high reliability, high thermal efficiency, fuel availability, and low consumption. They are used to generate power, e.g., in passenger cars, ships, power plants, marine offshore platforms, and mining and construction machines. The engine is at heart of these applications, so keeping it in good working condition is vital. Recent technical and computational advances and environmental legislation have stimulated the development of more efficient and robust techniques for the diagnostics of diesel engines. The emphasis is on the diagnostics of faults under development and the causes of engine failure or reduced efficiency. Diesel engine fuel injection plays an important role in the development of the combustion in the engine cylinder. Arguably, the most influential component of the diesel engine is the fuel injection equipment; even minor faults can cause a major loss of efficiency of the combustion and an increase in engine emissions and noise. With increased sophistication (e.g., higher injection pressures) being required to meet continuously improving noise, exhaust smoke, and gaseous emission regulations, fuel injection equipment is becoming even more susceptible to failure. The injection systems have been shown to be the largest contributing factor in diesel engine failures. Extracting the health information of components in the fuel injection system is a very demanding task. Besides the very time-consuming nature of experimental investigations, direct measurements are also limited to selected observation points. Diesel engine faults normally do not occur in a short timeframe. The modeling of typical engine faults, particularly combustion related faults, in a controlled manner is thus vital for the development of diesel engine diagnostics and fault detection. Simulation models based on physical grounds can enlarge the number of studied variables and also obtain a better understanding of localized phenomena that affect the overall behavior of the system. This paper presents a survey of the analysis, modeling, and diagnostics of diesel fuel injection systems. Typical diesel fuel injection systems and their common faults are presented. The most relevant state of the art research articles on analysis and modeling of fluid injection systems as well as diagnostics techniques and measured signals describing the behavior of the system are reviewed and the results and findings are discussed. The increasing demand and effect of legislation related to diagnostics, especially on-board diagnostics (OBD), are discussed with reference to the future progress of this field.

References

1.
Mahmoud
,
O. E.
,
2009
, “
An Intelligent Engine Condition Monitoring System
,”
Ph.D. dissertation
, School of Mechanical and System Engineering, Newcastle University, Newcastle upon Tyne, UK.
2.
Reif
,
Z.
,
2014
,
Diesel Engine Management—System and Components
,
Springer
,
Wiesbaden, Germany
.
3.
Gill
,
J.
,
Reuben
,
R.
,
Steel
,
J.
,
Scaife
,
M.
, and
Asquith
,
J.
,
2000
, “
A Study of Small HSDI Diesel Engine Fuel Injection Equipment Faults Using Acoustic Emission
,”
J. Acoust. Emiss.
,
18
, pp.
211
216
.
4.
Luckhchoura
,
V.
,
2010
, “
Modeling of Injection-Rate Shaping in Diesel Engine Combustion
,” Ph.D. dissertation, RWTH Aachen University, Aachen, Germany.
5.
MAN Diesel & Turbo
,
2014
, “
The Intelligent Engine: Development Status and Prospects
,” Last accessed Nov. 10, 2014, http://www.mandieselturbo.com/files/news/filesof769/Int%20Eng%20Prospects.pdf
6.
Murphy
,
B. J.
,
Lebold
,
M. S.
,
Reichard
,
K.
,
Roemer
,
M.
,
Orsagh
,
R.
, and
Schoeller
,
M.
,
2005
, “
Diagnostic Fault Detection & Intelligent Reconfiguration of Fuel Delivery Systems
,” 2005
IEEE
Aerospace Conference
, Big Sky, MT, Mar. 5–12, pp.
3514
3522
.
7.
Elamin
,
F.
,
2013
, “
Fault Detection and Diagnosis in Heavy Duty Diesel Engines Using Acoustic Emission
,”
Ph.D. dissertation
, University of Huddersfield, Huddersfield, UK.
8.
Tokars
,
R. P.
, and
Lekki
,
J. D.
,
2013
, “
Self Diagnostic Accelerometer Ground Testing on a C-17 Aircraft Engine
,” 2013
IEEE
Aerospace Conference
, Big Sky, MT, Mar. 2–9.
9.
Qadeer
,
A.
,
2011
, “
Fault Diagnosis Methodologies for Automotive Engine Air Intake Path
,” Ph.D. dissertation, Electronic Engineering Department, Mohammad Ali Jinnah University, Karachi, Pakistan.
10.
Mohammadpour
,
J.
,
Franchek
,
M.
, and
Grigoriadis
,
K.
,
2011
, “
A Survey on Diagnostics Methods for Automotive Engines
,”
Int. J. Eng. Res.
,
13
(
1
), pp.
41
64
.
11.
Jones
,
N.
, and
Li.
,
Y.
,
2000
, “
A Review of Condition Monitoring and Fault Diagnosis for Diesel Engines
,”
Tribotest
,
6
(
3
), pp.
267
291
.
12.
Leonhard
,
R.
,
Parche
,
M.
, and
Kendlbacher
,
C.
,
2011
, “
Injection Technology for Marine Diesel Engines
,”
MTZ Worldwide
,
72
(
4
), pp.
10
16
.
13.
GT Suite
,
2015
, Last accessed Apr. 27, 2015, htps://www.gtisoft.com
14.
Fenske
,
G.
,
Woodford
,
J.
,
Wang
,
J.
,
El-Hannouny
,
E.
,
Schaefer
,
R.
, and
Hamady
,
F.
,
2009
, “
Fabrication and Characterization of Micro-Orifices for Diesel Fuel Injectors
,”
SAE Int. J. Fuels Lubr.
,
1
(
1
), pp.
910
919
.
15.
Payri
,
F.
,
Broatch
,
A.
,
Tormos
,
B.
, and
Marant
,
V.
,
2005
, “
New Methodology for In-Cylinder Pressure Analysis in Direct Injection Diesel Engines—Application to Combustion Noise
,”
Meas. Sci. Technol.
,
16
(
2
), pp.
540
547
.
16.
Reif
,
Z.
,
2009
, “
High Pressure Common Rail Injector Problem Analysis
,”
Adv. Eng.
,
3
(
1
), pp.
103
116
.
17.
Payri
,
F.
,
Luján
,
J.
,
Guardiola
,
C.
, and
Rizzoni
,
G.
,
2006
, “
Injection Diagnosis Through Common-Rail Pressure Measurement
,”
Proc. Inst. Mech. Eng., Part D
,
220
(
3
), pp.
347
357
.
18.
Wierzbicki
,
S.
,
Śmieja
,
M.
, and
Piçtak
,
A.
,
2014
, “
Effect of the Pilot Charge Injection Advance Angle on the Operating Parameters of a Dual-Fuel Compression–Ignition Engine Fuelled With Biogas
,”
Agric. Eng.
,
46
(
1
), pp.
126
134
.
19.
Lin
,
T.
,
Tan
,
A.
, and
Mathew
,
J.
,
2011
, “
Condition Monitoring and Diagnosis of Injector Faults in a Diesel Engine Using In-Cylinder Pressure and Acoustic Emission Techniques
,”
14th Asia Pacific Vibration Conference
APVC 2011
, Hong Kong, China, Dec. 5–8.
20.
Elamin
,
F.
,
Fan
,
Y.
,
Gu
,
F.
, and
Ball
,
A.
,
2010
, “
Detection of Diesel Engine Injector Faults Using Acoustic Emission
,”
COMADEM 2010
:
Advances in Maintenance and Condition Diagnosis Technologies towards Sustainable Society: 23rd International Congress on Condition Monitoring and Diagnostic Engineering Management
, Nara, Japan, June 28–July 2, pp.
1
7
.
21.
He
,
Y.
, and
Feng
,
L.
,
2004
, “
Diesel Fuel Injection System Faults Diagnosis Based on Fuzzy Injection Pressure Pattern Recognition
,”
5th World Congress on Intelligent Control and Automation
, June 15–19, pp.
1654
1657
.
22.
Moshou
,
D.
,
Natsis
,
A.
,
Kateris
,
D.
,
Pantazi
,
Z.-E.
,
Kalimanis
,
I.
, and
Gravalos
,
I.
,
2013
, “
Fault Detection of Fuel Injectors Based on One-Class Classifiers
,”
Mod. Mech. Eng.
,
4
(
1
), pp.
19
27
.
23.
McDonald
,
B.
,
2015
, “
Tech Feature: Diagnosing Diesel Injector Problems
,” Last accessed June 1, 2015, http://www.underhoodservice.com
24.
Hsueh
,
M.
,
Tsai
,
T.
, and
Iyer
,
R.
,
1997
, “
Fault Injection Techniques and Tools
,”
IEEE Computer
,
30
(
4
), pp.
75
82
.
25.
D'Souza
,
A.
, and
Oldenburger
,
R.
,
1964
, “
Dynamic Response of Fluid Lines
,”
ASME J. Basic Eng.
,
86
(
3
), pp.
589
598
.
26.
Watton
,
J.
,
1988
, “
A Comparison of Techniques for the Analysis of Transmission Line Dynamics in Electrohydraulic Control Systems
,”
Appl. Math. Model.
,
12
(
5
), pp.
457
466
.
27.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
2007
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
,
Pearson Education Limited
,
Harlow, UK
.
28.
Eymard
,
R.
,
Gallouët
,
T.
, and
Raphaèle
,
H.
,
2013
, “
Finite Volume Methods
,” Last accessed June 10, 2015, http://www.cmi.univ-mrs.fr/∼herbin/PUBLI/bookevol.pdf
29.
ANSYS Fluent
,
2015
, Last accessed Apr. 27, 2015, http://www.ansys.com
30.
PHOENICS
,
2015
, Last accessed Apr. 27, 2015, http://www.cham.co.uk
31.
STAR-CCM+
,
2015
, Last accessed Apr. 27, 2015, http://www.cd-adapco.com
32.
AMEsim
,
2015
, “LMS Imagine.Lab Amesim,” Last accessed Apr. 27, 2015, http://www.plm.automation.siemens.com/en_us/products/lms/imagine-lab/amesim
33.
Comsol
,
2015
, Last accessed May 7, 2015, http://www.comsol.com
34.
Payri
,
R.
,
Tormos
,
B.
,
Gimeno
,
J.
, and
Bracho
,
G.
,
2010
, “
The Potential of Large Eddy Simulation (LES) Code for the Modeling of Flow in Diesel Injectors
,”
Math. Comput. Model.
,
52
(
7–8
), pp.
1151
1160
.
35.
Flowmaster V7
,
2015
, Last accessed June 8, 2015, http://www.mentor.com
36.
Yakhot
,
V.
, and
Orszag
,
S.
,
1986
, “
A Renormalization Group Analysis of Turbulence
,”
J. Sci. Comput.
,
1
(
1
), pp.
3
51
.
37.
Gan
,
G.
,
1998
, “
Prediction of Turbulent Buoyant Flow Using an RNG A-# Model
,”
Numer. Heat Transfer, Part A
,
33
(
9
), pp.
169
189
.
38.
Fureby
,
C.
,
2008
, “
Towards the Use of Large Eddy Simulation in Engineering
,”
Prog. Aerosp. Sci.
,
44
(
6
), pp.
381
396
.
39.
CONVERGE CFD
,
2015
, Last accessed June 10, 2015, http://convergecfd.com
40.
Payri
,
R.
,
Salvador
,
F.
,
Martí-Aldaraví
,
P.
, and
Martínez-López
,
J.
,
2012
, “
Using One-Dimensional Modelling to Analyse the Influence of the Use of Biodiesels on the Dynamic Behaviour of Solenoid-Operated Injectors in Common Rail Systems: Detailed injection system model
,”
Energy Conv. Manage.
,
54
(
1
), pp.
90
99
.
41.
Payri
,
R.
,
Climent
,
H.
,
Salvador
,
F.
, and
Favennec
,
A.
,
2004
, “
Diesel Injection System Modelling. Methodology and Application for a First-Generation Common Rail System
,”
Proc. Inst. Mech. Eng., Part D
,
218
(
1
), pp.
81
91
.
42.
Dongiovanni
,
C.
, and
Coppo
,
M.
,
2010
, “
Accurate Modelling of an Injector for Common Rail Systems
,”
Fuel Injection
,
D.
Siano
, ed.,
InTech Open Access Publisher
, Rijeka, Croatia, pp.
95
119
.
43.
Blackburn
,
J.
,
Reethof
,
G.
, and
Shearer
,
J.
,
1960
,
Fluid Power Control
,
The MIT Press
,
Cambridge, MA
.
44.
Ellman
,
A.
,
Koskinen
,
K.
, and
Vilenius
,
M.
,
1995
, “
Through Flow in Short Annulus of Fine Clearance
,”
ASME International Mechanical Engineering Congress and Exposition
, San Francisco, CA, Nov. 12–17, pp.
813
821
.
45.
Ramiréz
,
A.
,
Som
,
S.
,
Rutter
,
T.
,
Longman
,
D.
, and
Aggarwal
,
S.
,
2012
, “
Investigation of the Effects of Rate of Injection on Combustion Phasing and Emission Characteristics: Experimental and Numerical Study
,”
Spring Technical Meeting of the Central States Section of the Combustion Institute
, Dayton, OH, Apr. 22–24, pp.
1
16
.
46.
Som
,
S.
,
Longman
,
D.
,
Ramirez
,
A.
, and
Aggarwal
,
S.
,
2012
,
Influence of Nozzle Orifice Geometry and Fuel Properties on Flow and Cavitation Characteristics of a Diesel Injector
,
InTech Open Access Publisher
, Rijeka, Croatia, pp.
111
127
.
47.
Beierer
,
P.
,
2008
, “
Experimental and Numerical Analysis of the Hydraulic Circuit of a High Pressure Common Rail Diesel Fuel Injection System
,”
Ph.D. dissertation
, Department of Intelligent Hydraulics and Automation, Tampere University of Technology, Tampere, Finland.
48.
Beierer
,
P.
,
Huhtala
,
K.
, and
Vilenius
,
M.
,
2007
, “
Experimental Study of the Hydraulic Circuit of a Commercial Common Rail Diesel Fuel Injection System
,”
SAE
Technical Paper No. 2007-01-0487.
49.
Lino
,
P.
,
Maione
,
B.
, and
Rizzo
,
A.
,
2007
, “
Nonlinear Modelling and Control of a Common Rail Injection System for Diesel Engines
,”
Appl. Math. Model.
,
31
(
9
), pp.
1770
1784
.
50.
Seykens
,
X.
,
Somers
,
L.
, and
Baert
,
R.
,
2004
, “
Modelling of Common Rail Fuel Injection System and Influence of Fluid Properties on Injection Process
,”
VAFSEP2004
, Dublin, Ireland, July 6–9, pp.
1
6
.
51.
Seykens
,
X.
,
Somers
,
L.
, and
Baert
,
R.
,
2005
, “
Detailed Modeling of Common Rail Fuel Injection Process
,”
Mecca J. Middle Eur. Constr. Des. Cars
,
3
(
2–3
), pp.
30
40
.
52.
Bianchi
,
G.
,
Falfari
,
S.
,
Pelloni
,
P.
,
Kong
,
S.-C.
, and
Reitz
,
R.
,
2013
, “
Numerical Analysis of High-Pressure Fast-Response Common Rail Injector Dynamics
,”
SAE
Technical Paper No. 2002-01-0213.
53.
Liu
,
Z.
, and
Ouyang
,
G.
,
2009
, “
Numerical Analysis of Common Rail Electro-Injector for Diesel Engines
,”
2009 IEEE International Conference on Mechatronics and Automation
(
ICMA
), Changchun, China, Aug. 9–12, pp.
1683
1688
.
54.
Gauthier
,
C.
,
Sename
,
O.
,
Dugard
,
L.
, and
Meissonier
,
G.
,
2005
, “
Modelling of a Diesel Engine Common Rail Injection System
,” 16th
IFAC
World Congress
, Puebla, Mexico, Nov. 14–25, pp.
1
6
.
55.
Mäenpää
,
M.
,
2008
, “
Analysis of a Common Rail Injector Functional Performance and Dimensional Sensitivity
,”
M.Sc. thesis
, Faculty of Automation, Mechanical and Materials Engineering, Tampere University of Technology, Tampere, Finland.
56.
Zeuch
,
W.
,
1961
, “
Neue Verfahren zur Messung des Einspritzgesetzes und der Einspritz-Regelmässigkeit von Diesel-Einspritzpumpen
,”
MTZ
,
22
(
9
), pp.
344
349
.
57.
Robert Bosch GmbH
.,
2015
, “Repair Instead of Exchange,” Last accessed June 8, 2015, http://www.boschdieselcenter.com.sg/mam/boaa/master/docs/artikel_reparatur-statt-tausch_eng.pdf
59.
Broge
,
J.
,
2014
, “
Catepillar Joins Argonne's VERIFI Team to Undertake Cooperative Virtual Engine Design
,”
SAE Off-Highway Eng.
,
22
(
6
), pp.
6
8
.
60.
Pei
,
Y.
,
Shan
,
R.
,
Som
,
S.
,
Lu
,
T.
,
Longman
,
D.
, and
Davis
,
M.
,
2014
, “
Global Sensitivity Analysis of a Diesel Engine Simulation With Multi-Target Functions
,”
SAE
Technical Paper No. 2014-01-1117.
61.
Dernotte
,
J.
,
Hespel
,
C.
,
Foucher
,
F.
,
Houillé
,
S.
, and
Mounaïm-Rousselle
,
C.
,
2012
, “
Influence of Physical Fuel Properties on the Injection Rate in a Diesel Injector
,”
Fuel
,
96
, pp.
153
160
.
62.
Ramamurthi
,
K.
, and
Nandakumar
,
K.
,
1999
, “
Characteristics of Flow Through Small Sharp-Edged Cylindrical Orifices
,”
Flow Meas. Instrum.
,
10
(
3
), pp.
133
143
.
63.
Payri
,
R.
,
García
,
A.
,
Domenech
,
V.
,
Durrett
,
R.
, and
Plazas
,
A. H.
,
2012
, “
An Experimental Study of Gasoline Effects on Injection Rate, Momentum Flux and Spray Characteristics Using a Common Rail Diesel Injection System
,”
Fuel
,
97
, pp.
390
399
.
64.
Lee
,
J.
,
Wu
,
F.
,
Zhao
,
W.
,
Ghaffari
,
M.
,
Liao
,
L.
, and
Siegel
,
D.
,
2014
, “
Prognostics and Health Management Design for Rotary Machinery—Reviews Methodology and Application
,”
Mech. Syst. Signal Process.
,
42
(
1–2
), pp.
314
334
.
65.
Rizzoni
,
G.
,
Onori
,
S.
, and
Rugabotti
,
M.
,
2009
, “
Diagnosis and Prognosis of Automotive Systems: Motivation, History and Some Results
,”
7th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes
(
SAFEPROCESS
), Barcelona, Spain, June 30–July 3, pp.
191
202
.
66.
Watzenig
,
D.
,
Sommer
,
M.
, and
Steiner
,
G.
,
2013
, “
Model-Based Condition and State Monitoring of Large Marine Diesel Engines
,”
Diesel Engine—Combustion, Emissions and Condition Monitoring
,
S.
Bari
, ed.,
InTech Open Access Publisher
, Rijeka, Croatia, pp.
217
230
.
67.
Kim
,
E.
,
Tan
,
C.
, and
Yang
,
B.-S.
,
2012
, “
Acoustic Emission for Diesel Engine Monitoring: A Review and Preliminary Analysis
,”
Engineering Asset Management and Infrastructure Sustainability
,
J.
Mathew
,
L.
Ma
,
A.
Tan
,
M.
Weijnen
, and
J.
Lee
,
Springer-Verlag
,
London, UK
, pp.
489
499
.
68.
Kannan
,
G.
,
Balasubramanian
,
K.
, and
Anand
,
R.
,
2013
, “
Artificial Neural Network Approach to Study the Effect of Injection Pressure and Timing on Diesel Engine Performance Fueled With Biodiesel
,”
Int. J. Automot. Technol.
,
14
(
4
), pp.
507
519
.
69.
El-Ghamry
,
M.
,
Steel
,
J.
,
Reuben
,
R.
, and
Fog
,
T.
,
2005
, “
Indirect Measurement of Cylinder Pressure From Diesel Engines Using Acoustic Emission
,”
Mech. Syst. Signal Process.
,
19
(
4
), pp.
751
765
.
70.
Gao
,
Y.
, and
Randall
,
R.
,
1999
, “
Reconstruction of Diesel Engine Cylinder Pressure Using a Time Domain Smoothing Technique
,”
Mech. Syst. Signal Process.
,
13
(
5
), pp.
709
722
.
71.
Johnsson
,
R.
,
2006
, “
Cylinder Pressure Reconstruction Based on Complex Radial Basis Function Networks From Vibration and Speed Signals
,”
Mech. Syst. Signal Process.
,
20
(
8
), pp.
1923
1940
.
72.
Gu
,
F.
,
Jacob
,
P.
, and
Ball
,
A.
,
1999
, “
Non-Parametric Models in the Monitoring of Engine Performance and Condition: Part 2: Non-Intrusive Estimation of Diesel Engine Cylinder Pressure and Its Use in Fault Detection
,”
Proc. Inst. Mech. Eng., Part D
,
213
(
2
), pp.
135
143
.
73.
Moro
,
D.
,
Cavina
,
N.
, and
Ponti
,
F.
,
2002
, “
In-Cylinder Pressure Reconstruction Based on Instantaneous Engine Speed Signal
,”
ASME J. Eng. Gas Turbines Power
,
124
(
1
), pp.
220
225
.
74.
Leonhardt
,
S.
,
Ludwig
,
C.
, and
Schwarz
,
R.
,
1995
, “
Real-Time Supervision for Diesel Engine Injection
,”
Control Eng. Pract.
,
3
(
7
), pp.
1003
1010
.
75.
Ritscher
,
B.
,
2013
, “
Dual-Fuel Engine With Cylinder Pressure Based Control
,”
MTZ Ind.
,
3
(
2
), pp.
14
23
.
76.
Sharkey
,
A.
,
Chandroth
,
G.
, and
Sharkey
,
N.
,
2000
, “
A Multi-Net System for the Fault Diagnosis of a Diesel Engine
,”
Neural Comput. Appl.
,
9
(
2
), pp.
152
160
.
77.
Chandroth
,
G.
,
Sharkey
,
A.
, and
Sharkey
,
N.
,
1998
, “
Artificial Neural Nets and Cylinder Pressures in Diesel Engine Fault Diagnosis
,”
INMARCO Shipping Trends for the Next Millennium
, Mumbai, India, pp.
1
8
.
78.
Elamin
,
F.
,
Gu
,
F.
, and
Ball
,
A.
,
2010
, “
Diesel Engine Injector Faults Detection Using Acoustic Emissions Technique
,”
Mod. Appl. Sci.
,
4
(
9
), pp.
3
13
.
79.
Albarbar
,
A.
,
Gu.
,
F.
,
Ball
,
A.
, and
Starr
,
A.
,
2010
, “
Acoustic Monitoring of Engine Fuel Injection Based on Adaptive Filtering Techniques
,”
Appl. Acoust.
,
71
(
12
), pp.
1132
1141
.
80.
Albarbar
,
A.
,
Gu.
,
F.
, and
Ball
,
A.
,
2010
, “
Diesel Engine Fuel Injection Monitoring Using Acoustic Measurements and Independent Component Analysis
,”
Measurement
,
43
(
10
), pp.
1376
1386
.
81.
Jianmin
,
L.
,
Yupeng
,
S.
,
Xiaomin
,
Z.
,
Shiyong
,
X.
, and
Lijun
,
D.
,
2011
, “
Fuel Injection System Fault Diagnosis Based on Cylinder Head Vibration Signal
,”
Procedia Eng.
,
16
, pp.
218
223
.
82.
Wang
,
Z.
,
2009
, “
Study on Fault Diagnosis of Fuel Injection Based on Vibration Signal Analysis of High-Pressure Fuel Injection Pipe
,”
Appl. Phys. Res.
,
1
(
2
), pp.
1
5
.
83.
Kang
,
J.
, and
Hu
,
H.
,
2004
, “
Vibration Detection & Diagnosis for High-Pressure Fuel Pipe of Diesel Engineer
,”
2004 International Conference on Information Acquisition
, June 21–25, pp.
127
129
.
84.
Charles
,
P.
,
Sinha
,
J.
,
Gu
,
F.
,
Lidstone
,
L.
, and
Ball
,
A.
,
2009
, “
Detecting the Crankshaft Torsional Vibration of Diesel Engines for Combustion Related Diagnosis
,”
J. Sound Vib.
,
321
(
3–5
), pp.
1171
1185
.
85.
Costlow
,
T.
,
2015
, “
Aftertreatment Comes With Challenging Diagnosis
,”
SAE Off-Highway Eng.
,
23
(
1
), pp.
22
24
.
86.
King
,
P.
, and
Burnham
,
K.
,
2012
, “
Use of Confidence Limits in the Setting of On-Board Diagnostic Thresholds
,”
UKACC
International Conference on Control 2012
, Cardiff, UK, Sept. 3–5, pp.
708
712
.
87.
Scheffler
,
T.
,
Richert
,
F.
,
Niklas
,
L.
, and
Hasse
,
C.
,
2009
, “
Cylinder (Air–Fuel-Ratio) Diagnosis to Fulfil CARB MY2011 Requirements Without Oxygen Sensor Signal
,”
On-Board Diagnose
,
Expert Verlag
,
Renningen, Germany
, pp.
1
4
.
88.
Morey
,
B.
,
2014
, “
Calibration and Complexity
,”
SAE Off-Highway Eng.
,
22
(
6
), pp.
15
20
.
89.
Lanigan
,
P.
,
Kavulaya
,
S.
,
Narasimhan
,
P.
,
Fuhrman
,
T.
, and
Salman
,
M.
,
2011
, “
Diagnosis in Automotive Systems: A Survey
,” Last accessed Sept. 10, 2011, http://www.pdl.cmu.edu/PDL-FTP/ProblemDiagnosis/CMU-PDL-11-110.pdf
You do not currently have access to this content.