This paper reports an investigation of soot formation in ethylene–air partially premixed flames (PPFs) over a wide range of premixedness. An axisymmetric co-flow configuration is chosen to establish PPFs from the fully nonpremixed to fully premixed conditions. Reducing the fuel flow rate as a percentage of the maximum from the core stream and supplying the same to the annular stream leads to stratification of the reactant concentrations. The thermal power, overall equivalence ratio, and the average velocity in both the streams are maintained constant under all conditions. The soot volume fraction is estimated by light attenuation method, and laser-induced incandescence (LII) is performed to map the soot distribution in the flow field. The soot volume fraction is observed to exhibit an “S”-type trend as the conditions are traversed from near the premixed to the nonpremixed regimes. That is, when traversing from the nonpremixed to near-premixed regime, below 60% fuel flow rate in core, the soot volume fraction drops drastically. The onset of sooting in the PPFs is clearly seen to be at the tip of the rich-premixed flame (RPF) branch of their triple flame structure, which advances upstream toward the base of the flame as the premixing is reduced. The S-type variation is clearly the effect of partial premixing, more specifically due to the presence of the lean premixed flame (LPF) branch of the triple flame. LII intensities are insufficient to capture the upstream advance of the soot onset with decreased premixedness. So, a quick and inexpensive technique to isolate soot luminescence through flame imaging is presented in the paper involving quasi-simultaneous imaging with a 650 nm and a BG-3 filter using a normal color camera.

References

1.
Guo
,
H.
,
Gub
,
Z.
,
Thomson
,
K. A.
,
Smallwood
,
G. J.
, and
Baksh
,
F. F.
,
2013
, “
Soot Formation in a Laminar Ethylene/Air Diffusion Flame at Pressures From 1 to 8 atm
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
1795
1802
.
2.
Liu
,
F.
, and
Smallwood
,
G. J.
,
2011
, “
Control of the Structure and Sooting Characteristics of a Coflow Laminar Methane/Air Diffusion Flame Using a Central Air Jet: An Experimental and Numerical Study
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
1063
1070
.
3.
Goldstein
,
L.
, Jr.
,
Fassani
,
F. L.
, and
Santos
,
A. A. B.
,
2002
, “
Experimental Study of Secondary Air Diffusion Effects on Soot Concentration Along a Partially Premixed Acetylene/Air Flame
,”
Int. Commun. Heat Mass Transfer
,
29
(
2
), pp.
223
231
.
4.
Bladh
,
H.
,
Olofsson
,
N.-E.
,
Mouton
,
T.
,
Simonsson
,
J.
,
Mercier
,
X.
,
Faccinetto
,
A.
,
Bengtsson
,
P.-E.
, and
Desgroux
,
P.
,
2015
, “
Probing the Smallest Soot Particles in Low-Sooting Premixed Flames Using Laser-Induced Incandescence
,”
Proc. Combust. Inst.
,
35
(
2
), pp.
1843
1850
.
5.
Bennett
,
B. A. V.
,
Mcenally
,
C. S.
,
Pfefferle
,
L. D.
, and
Smooke
,
M. D.
,
2001
, “
Computational and Experimental Study of Axisymmetric Coflow Partially Premixed Ethylene/Air Flames
,”
Combust. Flame
,
127
(1–2), pp.
2004
2022
.
6.
Bennett
,
B. A. V.
,
Mcenally
,
C. S.
,
Pfefferle
,
L. D.
, and
Smooke
,
M. D.
,
2000
, “
Computational and Experimental Study of Axisymmetric Coflow Partially Premixed Methane/Air Flames
,”
Combust. Flame
,
123
(
4
), pp.
522
546
.
7.
Shu
,
Z.
,
Choi
,
C. W.
,
Aggarwal
,
S. K.
,
Katta
,
V. R.
, and
Puri
,
I. K.
,
1999
, “
Gravity Effects on Steady Two-Dimensional Partially Premixed Methane-Air Flames
,”
Combust. Flame
,
118
(
1–2
), pp.
91
107
.
8.
Smyth
,
K. C.
, and
Shaddix
,
C. R.
,
1996
, “
The Elusive History of m = 1.57 − 0.56i for the Refractive Index of Soot
,”
Combust. Flame
,
107
(
3
), pp.
314
320
.
9.
Hong
,
Z.
,
Davidson
,
D. F.
,
Vasu
,
S. S.
, and
Hanson
,
R. K.
,
2009
, “
The Effect of Oxygenates on Soot Formation in Rich Heptane Mixtures: A Shock Tube Study
,”
Fuel
,
88
(
10
), pp.
1901
1906
.
10.
Kioni
,
P. N.
,
Rogg
,
B.
,
Bray
,
K. N. C.
, and
Linan
,
A.
,
1993
, “
Flame Spread in Laminar Mixing Layers: The Triple Flame
,”
Combust. Flame
,
95
(
3
), pp.
276
290
.
11.
Lee
,
M. J.
, and Il
Kim
,
N.
,
2010
, “
The Stabilization of a Methane-Air Edge Flame Within a Mixing Layer in a Narrow Channel
,”
Combust. Flame
,
157
(
1
), pp.
201
203
.
12.
Mulla
, I
. A.
, and
Chakravarthy
,
S. R.
,
2013
, “
Propagation Velocity and Flame Stretch Measurements in Co-Flowing Partially Premixed Flames With Widely Varying Premixedness
,”
Combust. Flame
,
160
(
8
), pp.
1345
1356
.
13.
Blacha
,
T.
,
Di Domenico
,
M.
,
Gerlinger
,
P.
, and
Aigner
,
M.
,
2012
, “
Soot Predictions in Premixed and Non-Premixed Laminar Flames Using a Sectional Approach for PAHs and Soot
,”
Combust. Flame
,
159
(
1
), pp.
181
193
.
14.
Arana
,
C. P.
,
Pontoni
,
M.
,
Sen
,
S.
, and
Puri
,
I. K.
,
2004
, “
Field Measurements of Soot Volume Fractions in Laminar Partially Premixed Coflow Ethylene/Air Flames
,”
Combust. Flame
,
138
(
4
), pp.
362
372
.
15.
Chernov
,
V.
,
Zhang
,
Q.
,
Thomson
,
M. J.
, and
Dworkin
,
S. B.
,
2012
, “
Numerical Investigation of Soot Formation Mechanisms in Partially-Premixed Ethylene-Air co-Flow Flames
,”
Combust. Flame
,
159
(
9
), pp.
2789
2798
.
16.
Sony
,
2017
, “Sony IMX322LQJ-C,” Sony, Tokyo, Japan, accessed Feb. 8, 2017, http://dashcamtalk.com/cams/lk-7950-wd/Sony_IMX322.pdf
17.
Muruganandam
,
T. M.
,
Kim
,
B.-H.
,
Morrell
,
M. R.
,
Nori
,
V.
,
Patel
,
M.
,
Romig
,
B. W.
, and
Seitzman
,
J. M.
,
2005
, “
Optical Equivalence Ratio Sensors for Gas Turbine Combustors
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
1601
1609
.
18.
Nori
,
V. N.
,
2008
, “
Modeling and Analysis of Chemiluminescence Sensing for Syngas, Methane and Jet-A Combustion
,”
Ph.D. dissertation
, Georgia Institute of Technology, Atlanta, GA.https://smartech.gatech.edu/handle/1853/24681?show=full
You do not currently have access to this content.