Lean premixed combustion promotes the occurrence of thermoacoustic phenomena in gas turbine combustors. One mechanism that contributes to the flame–acoustic interaction is entropy noise. Fluctuations of the equivalence ratio in the mixing section cause the generation of hot spots in the flame. These so-called entropy waves are convectively transported to the first stage of the turbine and generate acoustic waves that travel back to the flame; a thermoacoustic loop is closed. However, due to the lack of experimental tools, a detailed investigation of entropy waves in gas turbine combustion systems has not been possible up to now. This work presents an acoustic time-of-flight based temperature measurement method which allows the measurement of temperature fluctuations in the relevant frequency range. A narrow acoustic pulse is generated with an electric spark discharge close to the combustor wall. The acoustic response is measured at the same axial location with an array of microphones circumferentially distributed around the combustion chamber. The delay in the pulse arrival times corresponds to the line-integrated inverse speed of sound. For the measurement of entropy waves in an atmospheric combustion test rig, fuel is periodically injected into the mixing tube of a premixed combustor. The subsequently generated entropy waves are measured for different forcing frequencies of the fuel injection and for different mean flow velocities in the combustor. The amplitude decay and phase lag of the entropy waves adhere well to a Strouhal number scaling for different mean flow velocities.
Skip Nav Destination
Article navigation
April 2017
Research-Article
An Acoustic Time-of-Flight Approach for Unsteady Temperature Measurements: Characterization of Entropy Waves in a Model Gas Turbine Combustor
Dominik Wassmer,
Dominik Wassmer
Chair of Fluid Dynamics,
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Str. 8,
Berlin 10623, Germany
e-mail: dominik.wassmer@tu-berlin.de
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Str. 8,
Berlin 10623, Germany
e-mail: dominik.wassmer@tu-berlin.de
Search for other works by this author on:
Christian Oliver Paschereit,
Christian Oliver Paschereit
Chair of Fluid Dynamics,
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Str. 8,
Berlin 10623, Germany
e-mail: oliver.paschereit@tu-berlin.de
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Str. 8,
Berlin 10623, Germany
e-mail: oliver.paschereit@tu-berlin.de
Search for other works by this author on:
Jonas P. Moeck
Jonas P. Moeck
Combustion Dynamics,
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Str. 8,
Berlin 10623, Germany
e-mail: jonas.moeck@tu-berlin.de
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Str. 8,
Berlin 10623, Germany
e-mail: jonas.moeck@tu-berlin.de
Search for other works by this author on:
Dominik Wassmer
Chair of Fluid Dynamics,
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Str. 8,
Berlin 10623, Germany
e-mail: dominik.wassmer@tu-berlin.de
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Str. 8,
Berlin 10623, Germany
e-mail: dominik.wassmer@tu-berlin.de
Bruno Schuermans
Christian Oliver Paschereit
Chair of Fluid Dynamics,
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Str. 8,
Berlin 10623, Germany
e-mail: oliver.paschereit@tu-berlin.de
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Str. 8,
Berlin 10623, Germany
e-mail: oliver.paschereit@tu-berlin.de
Jonas P. Moeck
Combustion Dynamics,
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Str. 8,
Berlin 10623, Germany
e-mail: jonas.moeck@tu-berlin.de
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Str. 8,
Berlin 10623, Germany
e-mail: jonas.moeck@tu-berlin.de
1Corresponding author.
Contributed by the Combustion and Fuels Committee of ASME for publication in the JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER. Manuscript received June 29, 2016; final manuscript received July 28, 2016; published online October 18, 2016. Editor: David Wisler.
J. Eng. Gas Turbines Power. Apr 2017, 139(4): 041501 (8 pages)
Published Online: October 18, 2016
Article history
Received:
June 29, 2016
Revised:
July 28, 2016
Citation
Wassmer, D., Schuermans, B., Oliver Paschereit, C., and Moeck, J. P. (October 18, 2016). "An Acoustic Time-of-Flight Approach for Unsteady Temperature Measurements: Characterization of Entropy Waves in a Model Gas Turbine Combustor." ASME. J. Eng. Gas Turbines Power. April 2017; 139(4): 041501. https://doi.org/10.1115/1.4034542
Download citation file:
Get Email Alerts
Shape Optimization of an Industrial Aeroengine Combustor to reduce Thermoacoustic Instability
J. Eng. Gas Turbines Power
Dynamic Response of A Pivot-Mounted Squeeze Film Damper: Measurements and Predictions
J. Eng. Gas Turbines Power
Review of The Impact Of Hydrogen-Containing Fuels On Gas Turbine Hot-Section Materials
J. Eng. Gas Turbines Power
Effects of Lattice Orientation Angle On Tpms-Based Transpiration Cooling
J. Eng. Gas Turbines Power
Related Articles
Acoustic Resonances of an Industrial Gas Turbine Combustion System
J. Eng. Gas Turbines Power (October,2001)
Experimental Study of Thermo-Acoustic Instability Triggering in a Staged Liquid Fuel Combustor Using High-Speed OH-PLIF
J. Eng. Gas Turbines Power (August,2018)
Online Monitoring of Thermoacoustic Eigenmodes in Annular Combustion Systems Based on a State-Space Model
J. Eng. Gas Turbines Power (February,2017)
Low NO x Lean Premix Reheat Combustion in Alstom GT24 Gas Turbines
J. Eng. Gas Turbines Power (May,2016)
Related Proceedings Papers
Related Chapters
Outlook
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Combined Cycle Power Plant
Energy and Power Generation Handbook: Established and Emerging Technologies
A Simple Carburetor
Case Studies in Fluid Mechanics with Sensitivities to Governing Variables