This paper presents comprehensive test measurements for gas journal bearings with damping structures of a bump foil layer and/or a polymer layer. A one-pad top foil forms the bearing surface, under which the bearing structure and a bearing housing are located. Test bearings include gas foil bearings (GFBs), gas polymer bearings (GPBs), and gas foil-polymer bearings (GFPBs). In addition, three metal shims were employed to create wedge effects in the GFPBs. First, static load-deflection tests of test bearings estimate the radial assembly clearance. Second, shake dynamic loading tests identify frequency-dependent dynamic characteristics. An electromagnetic shaker provides flat bearing specimens with one degree-of-freedom (1DOF) vertical dynamic loading. GFPB was measured to exhibit a higher structural damping and lower stiffness than GFB. Lastly, the electric motor driving tests examine the rotordynamic stability performance. A permanent magnet (PM) synchronous motor drives a PM rotor supported on a pair of test journal bearings. As a result, the GFPBs with mechanical preloads enhanced the rotordynamic performance with no subsynchronous motions up to the maximum rotor speed of 88 krpm, and the bearing friction characteristics as well. Furthermore, they showed comparable rotordynamic performance to three-pad GFBs from a past literature, even with larger bearing clearances and small mechanical preloads.

References

1.
San Andrés
,
L.
, and
Kim
,
T. H.
,
2009
, “
Analysis of Gas Foil Bearings Integrating FE Top Foil Models
,”
Tribol. Int.
,
42
(
1
), pp.
111
120
.
2.
Kim
,
T. H.
, and
San Andres
,
L.
,
2008
, “
Heavily Loaded Gas Foil Bearings: A Model Anchored to Test Data
,”
ASME J. Eng. Gas Turbines Power
,
130
(
1
), p.
012504
.
3.
Heshmat
,
H.
,
Walowit
,
J. A.
, and
Pinkus
,
O.
,
1983
, “
Analysis of Gas-Lubricated Foil Journal Bearings
,”
ASME J. Lubr. Technol.
,
105
(
4
), pp.
647
655
.
4.
Šimek
,
J.
,
2012
, “
Application of a New Type of Aerodynamic Tilting Pad Journal Bearing in Power Gyroscope
,”
Eng. Mech.
,
19
(
5
), pp.
359
368
.
5.
Arora
,
V.
,
van der Hoogt
,
P. J. M.
,
Arts
,
R. G. K. M.
, and
de Boer
,
A.
,
2011
, “
Identification of Stiffness and Damping Characteristics of Axial Air-Foil Bearings
,”
Int. J. Mech. Mater. Des.
,
7
(
3
), pp.
231
243
.
6.
San Andrés
,
L.
, and
Kim
,
T. H.
,
2008
, “
Forced Nonlinear Response of Gas Foil Bearing Supported Rotors
,”
Tribol. Int.
,
41
(
8
), pp.
704
715
.
7.
Schiffmann
,
J.
, and
Spakovszky
,
Z. S.
,
2013
, “
Foil Bearing Design Guidelines for Improved Stability
,”
ASME J. Tribol.
,
135
(
1
), p.
011103
.
8.
Kim
,
T. H.
, and
San Andrés
,
L.
,
2009
, “
Effects of a Mechanical Preload on the Dynamic Force Response of Gas Foil Bearings: Measurements and Model Predictions
,”
STLE Tribol. Trans.
,
52
(
4
), pp.
569
580
.
9.
Sim
,
K.
,
Lee
,
Y.-B.
, and
Kim
,
T. H.
,
2013
, “
Effects of Mechanical Preload and Bearing Clearance on Rotordynamic Performance of Lobed Gas Foil Bearings for Oil-Free Turbochargers
,”
STLE Tribol. Trans.
,
56
(
2
), pp.
224
235
.
10.
Sim
,
K.
,
Koo
,
B. J.
,
Lee
,
J. S.
, and
Kim
,
T. H.
,
2014
, “
Effects of Mechanical Preloads on the Rotordynamic Performance of a Rotor Supported on Three-Pad Gas Foil Journal Bearings
,”
ASME J. Eng. Gas Turbines Power
,
136
(
12
), p.
122503
.
11.
Lee
,
J. S.
, and
Kim
,
T. H.
,
2014
, “
Analysis of Three-Pad Gas Foil Journal Bearing for Increasing Mechanical Preloads
,”
KSTLE J. Korean Soc. Tribol. Lubr. Eng.
,
30
(
1
), pp.
1
8
.
12.
Lee
,
Y.-B.
,
Kim
,
T.-H.
,
Kim
,
C.-H.
,
Lee
,
N.-S.
, and
Choi
,
D.-H.
,
2004
, “
Dynamic Characteristics of a Flexible Rotor System Supported by a Viscoelastic Foil Bearing (VEFB)
,”
Tribol. Int.
,
37
(
9
), pp.
679
687
.
13.
Lee
,
Y. B.
,
Kim
,
T. H.
,
Kim
,
C. H.
,
Lee
,
N. S.
, and
Choi
,
D. H.
,
2004
, “
Unbalance Response of a Super-Critical Rotor Supported by Foil Bearings–Comparison With Test Results
,”
Tribol. Trans.
,
47
(
1
), pp.
54
60
.
14.
William
,
R. B.
,
1996
, “
Shimmed Three Lobe Compliant Foil Gas Bearing
,”
U.S. Patent No. 5,498,083
.
15.
Inman
,
D. J.
,
2012
,
Engineering Vibrations
, 3rd ed.,
Pearson Education
, Upper Saddle River, NJ, Chap. 2.
16.
Kai
,
F.
,
Yuman
,
L.
,
Xueyuan
,
Z.
, and
Wanhui
,
L.
,
2016
, “
Experimental Evaluation of the Structure Characterization of a Novel Hybrid Bump-Metal Mesh Foil Bearing
,”
ASME J. Tribol.
,
138
(
2
), p.
021702
.
17.
San Andrés
,
L.
, and
Chirathadam
,
T. A.
,
2011
, “
Identification of Rotordynamic Force Coefficients of a Metal Mesh Foil Bearing Using Impact Load Excitations
,”
ASME J. Eng. Gas Turbines Power
,
133
(
11
), p.
112501
.
18.
Le Lez
,
S.
,
Arghir
,
M.
, and
Frene
,
J.
,
2007
, “
Static and Dynamic Characterization of a Bump-Type Foil Bearing Structure
,”
ASME J. Tribol.
,
129
(
1
), pp.
75
83
.
19.
Adhikari
,
S.
,
2000
, “
Damping Models for Structural Vibration
,”
Ph.D. dissertation
, University of Cambridge, Cambridge, UK.
20.
Sim
,
K.
,
Park
,
J. S.
, and
Lee
,
S. H.
,
2015
, “
Identification of Frequency-Dependent Dynamic Characteristics of a Bump Structure for Gas-Foil Bearing Via 1-DOF Shaker Tests Under Air Pressurization
,”
J. Korean Soc. Mech. Eng. A
,
39
(
10
), pp.
1029
1037
.
21.
Lee
,
D. H.
,
Kim
,
Y. C.
, and
Kim
,
K. W.
, 2004, “
The Effects of Compliance on the Performance of Air Foil Bearing
,” The 38th Korea Lubricants Symposium, The Korea Society of Tribologists and Lubrication Engineers, Seoul, Korea, pp.
157
162
.
22.
Lee
,
Y. B.
,
Kim
,
T. H.
,
Kim
,
C. H.
, and
Lee
,
N. S.
,
2003
, “
Suppression of Subsynchronous Vibrations Due to Aerodynamic Response to Surge in a Two-Stage Centrifugal Compressor With Air Foil Bearings
,”
STLE Tribol. Trans.
,
46
(
3
), pp.
428
434
.
23.
Rlack
,
R. D.
,
Rooke
,
J. H.
,
Bielk
,
J. R.
, and
Hunter
,
E. J.
,
1982
, “
Comparison of the Unbalance Responses of Jeffcott Rotors With Shaft Bow and Shaft Runout
,”
ASME J. Mech. Des.
,
104
(
2
), pp.
318
328
.
24.
Genta
,
G.
,
2005
,
Dynamics of Rotating Systems
,
Springer
,
New York
, Chap. 8.
25.
Childs
,
D.
,
1993
,
Turbomachinery Rotordynamics
,
Wiley
,
New York
, Chap. 3.
26.
Lake
,
G. J.
, and
Lindley
,
P. B.
,
1965
, “
The Mechanical Fatigue Limit for Rubber
,”
J. Appl. Polym. Sci.
,
9
(
4
), pp.
1233
1251
.
27.
Romac Engineering Department,
2017
, “
Nitrile Butadiene Rubber Standard Gasket for Fab Products
,” Technical Report, Romac Industries, Inc., Bothell, WA, accessed May 7, 2016, http://www.romac.com/Submittals/RUBBER/NBR-SUB.pdf
You do not currently have access to this content.