The noise generated by the passage of acoustic and entropy perturbations through subsonic and choked nozzle flows is investigated numerically using an energetic approach. Low-order models are used to reproduce the experimental results of the hot acoustic test rig (HAT) of Deutsches Zentrum für Luft- und Raumfahrt (DLR), and energy budgets are performed to characterize the reflection, transmission, and dissipation of the fluctuations. Because acoustic and entropy perturbations are present in the flow in the general case, classical acoustic energy budgets cannot be used and the disturbances energy budgets proposed by Myers (1991, “Transport of Energy by Disturbances in Arbitrary Steady Flows,” J. Fluid Mech., 226, pp. 383–400.) are used instead. Numerical results are in very good agreement with the experiments in terms of acoustic transmission and reflection coefficients. The normal shock present in the diffuser for choked regimes is shown to attenuate the scattered acoustic fluctuations, either by pure dissipation effect or by converting a part of the acoustic energy into entropy fluctuations.

References

1.
ACARE
,
2010
, “
Aeronautics and Air Transport: Beyond Vision 2020 (Towards 2050)
,”
Advisory Council for Aeronautics Research in Europe
, Brussels, Belgium.
2.
Dowling
,
A. P.
, and
Mahmoudi
,
Y.
,
2015
, “
Combustion Noise
,”
Proc. Combust. Inst.
,
35
(1), pp.
65
100
.
3.
Candel
,
S.
,
Durox
,
D.
,
Ducruix
,
S.
,
Birbaud
,
A.-L.
,
Noiray
,
N.
, and
Schuller
,
T.
,
2009
, “
Flame Dynamics and Combustion Noise: Progress and Challenges
,”
Int. J. Aeroacoustics
,
8
(1), pp.
1
56
.
4.
Candel
,
S.
,
1972
, “
Analytical Studies of Some Acoustic Problems of Jet Engines
,”
Ph.D. thesis
, California Institute of Technology, Pasadena, CA.
5.
Marble
,
F. E.
,
1973
, “
Acoustic Disturbance From Gas Non-Uniformities Convecting Through a Nozzle
,”
Interagency Symposium on University Research in Transportation Noise
, pp.
547
561
.
6.
Morfey
,
C. L.
,
1973
, “
Amplification of Aerodynamic Noise by Convected Flow Inhomogeneities
,”
J. Sound Vib.
,
31
(4), pp.
391
397
.
7.
Marble
,
F. E.
, and
Candel
,
S. M.
,
1977
, “
Acoustic Disturbance From Gas Non-Uniformities Convected Through a Nozzle
,”
J. Sound Vib.
,
55
(2), pp.
225
243
.
8.
Moase
,
W. H.
,
Brear
,
M. J.
, and
Manzie
,
C.
,
2007
, “
The Forced Response of Choked Nozzles and Supersonic Diffusers
,”
J. Fluid Mech.
,
585
, pp.
281
304
.
9.
Giauque
,
A.
,
Huet
,
M.
, and
Clero
,
F.
,
2012
, “
Analytical Analysis of Indirect Combustion Noise in Subcritical Nozzles
,”
ASME J. Eng. Gas Turbines Power
,
134
(11), p.
111202
.
10.
Duran
,
I.
, and
Moreau
,
S.
,
2013
, “
Solution of the Quasi-One-Dimensional Linearized Euler Equations Using Flow Invariants and the Magnus Expansion
,”
J. Fluid Mech.
,
723
, pp.
190
231
.
11.
Huet
,
M.
, and
Giauque
,
A.
,
2013
, “
A Nonlinear Model for Indirect Combustion Noise Through a Compact Nozzle
,”
J. Fluid Mech.
,
733
, pp.
268
301
.
12.
Duran
,
I.
, and
Morgans
,
A. S.
,
2015
, “
On the Reflection and Transmission of Circumferential Waves Through Nozzles
,”
J. Fluid Mech.
,
773
, pp.
137
153
.
13.
Bake
,
F.
,
Richter
,
C.
,
Mühlbauer
,
B.
,
Kings
,
N.
,
Röhle
,
I.
,
Thiele
,
F.
, and
Noll
,
B.
,
2009
, “
The Entropy Wave Generator (EWG): A Reference Case on Entropy Noise
,”
J. Sound Vib.
,
326
(3–5), pp.
574
598
.
14.
Kings
,
N.
, and
Bake
,
F.
,
2010
, “
Indirect Combustion Noise: Noise Generation by Accelerated Vorticity in a Nozzle Flow
,”
Int. J. Spray Combust. Dyn.
,
2
(3), pp.
253
266
.
15.
Mühlbauer
,
B.
,
Noll
,
B.
, and
Aigner
,
M.
,
2009
, “
Numerical Investigation of the Fundamental Mechanism for Entropy Noise Generation in Aero-Engines
,”
Acta Acust. Acust.
,
95
(3), pp.
470
478
.
16.
Leyko
,
M.
,
Moreau
,
S.
,
Nicoud
,
F.
, and
Poinsot
,
T.
,
2011
, “
Numerical and Analytical Modelling of Entropy Noise in a Supersonic Nozzle With a Shock
,”
J. Sound Vib.
,
330
(16), pp.
3944
3958
.
17.
Lourier
,
J.-M.
,
Huber
,
A.
,
Noll
,
B.
, and
Aigner
,
M.
,
2014
, “
Numerical Analysis of Indirect Combustion Noise Generation Within a Subsonic Nozzle
,”
AIAA J.
,
52
(10), pp.
2114
2126
.
18.
Knobloch
,
K.
,
Werner
,
T.
, and
Bake
,
F.
,
2015
, “
Noise Generation in Hot Nozzle Flow
,”
ASME
Paper No. GT2015-43702.
19.
Knobloch
,
K.
,
Werner
,
T.
, and
Bake
,
F.
,
2015
, “
Entropy Noise Generation and Reduction in a Heated Nozzle Flow
,”
AIAA
Paper No. 2015-2818.
20.
Myers
,
M. K.
,
1991
, “
Transport of Energy by Disturbances in Arbitrary Steady Flows
,”
J. Fluid Mech.
,
226
, pp.
383
400
.
21.
Talei
,
M.
,
Brear
,
M. J.
,
Nicoud
,
F.
,
Bodony
,
D. J.
, and
Giauque
,
A.
,
2007
, “
Transport of Disturbance Energy in Hot and Cold Turbulent Jets
,”
AIAA
Paper No. 2007-3633.
22.
Brear
,
M. J.
,
Nicoud
,
F.
,
Talei
,
M.
,
Giauque
,
A.
, and
Hawkes
,
E. R.
,
2012
, “
Disturbance Energy Transport and Sound Production in Gaseous Combustion
,”
J. Fluid Mech.
,
707
, pp.
53
73
.
23.
Giauque
,
A.
,
Poinsot
,
T.
,
Brear
,
M.
, and
Nicoud
,
F.
,
2006
, “
Budget of Disturbance Energy in Gaseous Reacting Flows
,”
Center for Turbulence Research Summer Program
, July 9–Aug. 4, pp. 285–297.
24.
Huet
,
M.
,
2016
, “
Nonlinear Indirect Combustion Noise for Compact Supercritical Nozzle Flows
,”
J. Sound Vib.
,
374
, pp.
211
227
.
25.
Giauque
,
A.
,
2007
, “
Fonctions de transfert de flamme et énergies de perturbation dans les écoulements réactifs
,” Ph.D. thesis, Institut National Polytechnique de Toulouse, Toulouse, France.
26.
Knobloch
,
K.
,
Neuhaus
,
L.
,
Bake
,
F.
, and
Paolo Gaetani
,
G. P.
,
2016
, “
Experimental Assessment of Noise Generation and Transmission in a High-Pressure Transonic Turbine Stage
,”
ASME
Paper No. GT2016-57209.
27.
Knobloch
,
K.
,
Holewa
,
A.
,
Guérin
,
S.
,
Mahmoudi
,
Y.
,
Hynes
,
T.
, and
Bake
,
F.
,
2016
, “
Noise Transmission Characteristics of a High Pressure Turbine Stage
,”
AIAA
Paper No. 2016-3001.
28.
Huet
,
M.
,
Vuillot
,
F.
,
Bertier
,
N.
,
Mazur
,
M.
,
Kings
,
N.
,
Tao
,
W.
,
Scouflaire
,
P.
,
Richecoeur
,
F.
,
Ducruix
,
S.
,
Lapeyre
,
C.
, and
Poinsot
,
T.
,
2016
, “
Recent Improvements in Combustion Noise Investigation: From the Combustion Chamber to Nozzle Flow
,”
J. Aerospace Lab
,
11
, p. 10.
29.
Bogey
,
C.
, and
Bailly
,
C.
,
2004
, “
A Family of Low Dispersive and Low Dissipative Explicit Schemes for Flow and Noise Computations
,”
J. Comput. Phys.
,
194
(1), pp.
194
214
.
30.
Bogey
,
C.
,
de Cacqueray
,
N.
, and
Bailly
,
C.
,
2009
, “
A Shock-Capturing Methodology Based on Adaptative Spatial Filtering for High-Order Non-Linear Computations
,”
J. Comput. Phys.
,
228
(5), pp.
1447
1465
.
31.
Poinsot
,
T. J.
, and
Lele
,
S. K.
,
1992
, “
Boundary Conditions for Direct Simulations of Compressible Viscous Flows
,”
J. Comput. Phys.
,
101
(1), pp.
104
129
.
32.
Huet
,
M.
,
2015
, “
One-Dimensional Characteristic Boundary Conditions Using Nonlinear Invariants
,”
J. Comput. Phys.
,
283
, pp.
312
328
.
33.
Giauque
,
A.
,
Huet
,
M.
,
Clero
,
F.
,
Ducruix
,
S.
, and
Richecoeur
,
F.
,
2013
, “
Thermoacoustic Shape Optimization of a Subsonic Nozzle
,”
ASME J. Eng. Gas Turbines Power
,
135
(10), p.
102601
.
34.
Huet
,
M.
,
2017
, “
Influence of Calorically Perfect Gas Assumption and Thermal Diffusion on Indirect Noise Generation
,”
24th International Congress on Sound and Vibration
(
ICSV
), London, July 23–27.
35.
Zheng
,
J.
,
Huet
,
M.
,
Cléro
,
F.
,
Giauque
,
A.
, and
Ducruix
,
S.
,
2015
, “
A 2D-Axisymmetric Analytical Model for the Estimation of Indirect Combustion Noise in Nozzle Flows
,”
AIAA
Paper No. 2015-2974.
36.
Zheng
,
J.
,
2016
,
Analytical and Numerical Study of the Indirect Combustion Noise Generated by Entropy Disturbances in Nozzle Flows
,” Ph.D. thesis, Université Paris-Saclay, Saint-Aubin, France.
37.
Emmanuelli
,
A.
,
Huet
,
M.
,
Le Garrec
,
T.
, and
Ducruix
,
S.
,
2017
, “
CAA Study of Entropy Noise in Nozzle Flow for the Validation of a 2D Semi-Analytical Model
,”
ASME
Paper No. GT2017-63640.
38.
Mazur
,
M.
,
Tao
,
W.
,
Scouflaire
,
P.
,
Richecoeur
,
F.
, and
Ducruix
,
S.
,
2015
, “
Experimental and Analytical Study of the Acoustic Properties of a Gas Turbine Model Combustor With a Choked Nozzle
,”
ASME
Paper No. GT2015-43013.
39.
Lapeyre
,
C. J.
,
Mazur
,
M.
,
Scouflaire
,
P.
,
Richecoeur
,
F.
,
Ducruix
,
S.
, and
Poinsot
,
T.
,
2017
, “
Acoustically Induced Flashback in a Staged Swirl-Stabilized Combustor
,”
Flow, Turbul. Combust.
,
98
(
1
), pp.
265
282
.
You do not currently have access to this content.