During the commissioning and stand-still cycles of wind turbines, the rotor is often stopped or even locked leaving the rotor blades at a standstill. When the blades are at a standstill, angles of attack on the blades can be very high, and it is therefore possible that they experience vortex-induced vibrations. This experiment and analysis helps to explain the different regimes of flow at very high angles of attack, particularly on moderately twisted and tapered blades. A single blade was tested at two different flow velocities at a range of angles of attack with flow tuft visualization and hotwire measurements of the wake. Hotwire wake measurements were able to show the gradual inception and ending of certain flow regimes. The power spectral densities of these measurements were normalized in terms of Strouhal number based on the projected chord to show that certain wake features have a relatively constant Strouhal number. The shedding frequency appears then to be relatively independent of chord taper and twist. Vortex generators (VGs) were tested but were found to have little influence in this case. Gurney flaps were found to modify the wake geometry, stall onset angles, and in some cases the shedding frequency.
Skip Nav Destination
Article navigation
November 2018
Research-Article
Vortex Shedding and Frequency Lock in on Stand Still Wind Turbines—A Baseline Experiment
Matthew Lennie,
Matthew Lennie
Chair of Fluid Dynamics,
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Str. 8,
Berlin 10623, Germany
e-mail: matthew.lennie@tu-berlin.de
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Str. 8,
Berlin 10623, Germany
e-mail: matthew.lennie@tu-berlin.de
Search for other works by this author on:
Alireza Selahi-Moghaddam,
Alireza Selahi-Moghaddam
Chair of Fluid Dynamics,
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Str. 8,
Berlin 10623, Germany
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Str. 8,
Berlin 10623, Germany
Search for other works by this author on:
David Holst,
David Holst
Chair of Fluid Dynamics,
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Str. 8,
Berlin 10623, Germany
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Str. 8,
Berlin 10623, Germany
Search for other works by this author on:
George Pechlivanoglou,
George Pechlivanoglou
Chair of Fluid Dynamics,
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Str. 8,
Berlin 10623, Germany
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Str. 8,
Berlin 10623, Germany
Search for other works by this author on:
Christian Navid Nayeri,
Christian Navid Nayeri
Chair of Fluid Dynamics,
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Str. 8,
Berlin 10623, Germany
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Str. 8,
Berlin 10623, Germany
Search for other works by this author on:
Christian Oliver Paschereit
Christian Oliver Paschereit
Chair of Fluid Dynamics,
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Str. 8,
Berlin 10623, Germany
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Str. 8,
Berlin 10623, Germany
Search for other works by this author on:
Matthew Lennie
Chair of Fluid Dynamics,
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Str. 8,
Berlin 10623, Germany
e-mail: matthew.lennie@tu-berlin.de
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Str. 8,
Berlin 10623, Germany
e-mail: matthew.lennie@tu-berlin.de
Alireza Selahi-Moghaddam
Chair of Fluid Dynamics,
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Str. 8,
Berlin 10623, Germany
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Str. 8,
Berlin 10623, Germany
David Holst
Chair of Fluid Dynamics,
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Str. 8,
Berlin 10623, Germany
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Str. 8,
Berlin 10623, Germany
George Pechlivanoglou
Chair of Fluid Dynamics,
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Str. 8,
Berlin 10623, Germany
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Str. 8,
Berlin 10623, Germany
Christian Navid Nayeri
Chair of Fluid Dynamics,
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Str. 8,
Berlin 10623, Germany
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Str. 8,
Berlin 10623, Germany
Christian Oliver Paschereit
Chair of Fluid Dynamics,
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Str. 8,
Berlin 10623, Germany
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Str. 8,
Berlin 10623, Germany
1Corresponding author.
Contributed by the Turbomachinery Committee of ASME for publication in the JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER. Manuscript received November 14, 2017; final manuscript received March 1, 2018; published online July 30, 2018. Editor: David Wisler.
J. Eng. Gas Turbines Power. Nov 2018, 140(11): 112603 (13 pages)
Published Online: July 30, 2018
Article history
Received:
November 14, 2017
Revised:
March 1, 2018
Citation
Lennie, M., Selahi-Moghaddam, A., Holst, D., Pechlivanoglou, G., Navid Nayeri, C., and Paschereit, C. O. (July 30, 2018). "Vortex Shedding and Frequency Lock in on Stand Still Wind Turbines—A Baseline Experiment." ASME. J. Eng. Gas Turbines Power. November 2018; 140(11): 112603. https://doi.org/10.1115/1.4039818
Download citation file:
Get Email Alerts
Cited By
An Efficient Uncertainty Quantification Method Based on Inter-Blade Decoupling for Compressors
J. Eng. Gas Turbines Power
Experimental Design Validation of A Swirl-Stabilized Burner with Fluidically Variable Swirl Number
J. Eng. Gas Turbines Power
Experimental Characterization of A Bladeless Air Compressor
J. Eng. Gas Turbines Power
Related Articles
Potential of Retrofit Passive Flow Control for Small Horizontal Axis Wind Turbines
J. Eng. Gas Turbines Power (March,2017)
Control of Vortex Shedding Using a Screen Attached on the Separation Point of a Circular Cylinder and Its Effect on Drag
J. Fluids Eng (July,2017)
Flow Structure in the Wake of a Rotationally Oscillating Cylinder
J. Fluids Eng (June,2000)
Review Paper on Wind Turbine Aerodynamics
J. Fluids Eng (November,2011)
Related Proceedings Papers
Related Chapters
Vortex-Induced Vibration
Flow Induced Vibration of Power and Process Plant Components: A Practical Workbook
Cavitating Structures at Inception in Turbulent Shear Flow
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
Wind Turbine Airfoils and Rotor Wakes
Wind Turbine Technology: Fundamental Concepts in Wind Turbine Engineering, Second Edition