Many sources of uncertainty exist when emissions are modeled for a gas turbine combustion system. They originate from uncertain inputs, boundary conditions, calibration, or lack of sufficient fidelity in a model. In this paper, a nonintrusive polynomial chaos expansion (NIPCE) method is coupled with a chemical reactor network (CRN) model using Python to quantify uncertainties of NOx emission in a premixed burner. The first objective of uncertainty quantification (UQ) in this study is development of a global sensitivity analysis method based on the NIPCE method to capture aleatory uncertainty on NOx emission due to variation of operating conditions. The second objective is uncertainty analysis (UA) of NOx emission due to uncertain Arrhenius parameters in a chemical kinetic mechanism to study epistemic uncertainty in emission modeling. A two-reactor CRN consisting of a perfectly stirred reactor (PSR) and a plug flow reactor (PFR) is constructed in this study using Cantera to model NOx emission in a benchmark premixed burner under gas turbine operating conditions. The results of uncertainty and sensitivity analysis (SA) using NIPCE based on point collocation method (PCM) are then compared with the results of advanced Monte Carlo simulation (MCS). A set of surrogate models is also developed based on the NIPCE approach and compared with the forward model in Cantera to predict NOx emissions. The results show the capability of NIPCE approach for UQ using a limited number of evaluations to develop a UQ-enabled emission prediction tool for gas turbine combustion systems.

References

1.
Lefebvre
,
A. H.
, and
Ballal
,
D. R.
,
2010
,
Gas Turbine Combustion: Alternative Fuels and Emissions
, 3rd ed.,
CRC Press
,
Boca Raton, FL
.
2.
Hosder
,
S.
,
Walters
,
R. W.
, and
Balch
,
M.
,
2010
, “
Point-Collocation Nonintrusive Polynomial Chaos Method for Stochastic Computational Fluid Dynamics
,”
AIAA J.
,
48
(
12
), pp.
2721
2730
.
3.
Allaire
,
D.
,
Noel
,
G.
,
Willcox
,
K.
, and
Cointin
,
R.
,
2014
, “
Uncertainty Quantification of an Aviation Environmental Toolsuite
,”
Reliab. Eng. Syst. Saf.
,
126
, pp.
14
24
.
4.
Augustin
,
F.
,
Gilg
,
A.
,
Paffrath
,
M.
,
Rentrop
,
P.
, and
Wever
,
U.
,
2008
, “
A Survey in Mathematics for Industry Polynomial Chaos for the Approximation of Uncertainties: Chances and Limits
,”
Eur. J. Appl. Math.
,
19
(
2
), pp.
149
190
.
5.
Faragher
,
J.
,
2006
, “
The Implementation of Probabilistic Methods for Uncertainty Analysis in Computational Fluid Dynamics Simulations of Fluid Flow and Heat Transfer in a Gas Turbine Engine
,” Air Vehicles Division, Defence Science and Technology Organisation, Melbourne, Australia, Report No.
DSTO-TR-1830
.http://www.dtic.mil/dtic/tr/fulltext/u2/a451870.pdf
6.
Rezvani
,
R.
,
2010
, “
A Conceptual Methodology for the Prediction of Engine Emissions
,”
Ph.D. thesis
, School of Aerospace/College of Engineering, Georgia Institute of Technology, Atlanta, GA.https://smartech.gatech.edu/handle/1853/42932
7.
AIAA
,
1998
, “
Guide for the Verification and Validation of Computational Fluid Dynamics Simulations
,” American Institute of Aeronautics and Astronautics, Reston, VA.
8.
Yousefian
,
S.
,
Bourque
,
G.
, and
Monaghan
,
R. F. D.
,
2017
, “
Review of Hybrid Emissions Prediction Tools and Uncertainty Quantification Methods for Gas Turbine Combustion Systems
,”
ASME
Paper No. GT2017-64271.
9.
Oliphant
,
T. E.
,
2007
, “
Python for Scientific Computing
,”
Comput. Sci. Eng.
,
9
(
3
), pp.
10
20
.
10.
Millman, K. J., and Aivazis, M.,
2011
, “
Python for Scientists and Engineers
,”
Comput. Sci. Eng.
,
13
(
2
), pp.
9
12
.
11.
Jones, E., Oliphant, T., and Peterson, P., 2001, “
SciPy: Open Source Scientific Tools for Python
,” SciPy, accessed July 27, 2018, http://www.scipy.org/
12.
Hunter
,
J. D.
,
2007
, “
Matplotlib: A 2D Graphics Environment
,”
Comput. Sci. Eng.
,
9
(
3
), pp.
1521
9615
.
13.
Pedregosa
,
F.
,
Varoquaux
,
G.
,
Gramfort
,
A.
,
Michel
,
V.
,
Thirion
,
B.
,
Grisel
,
O.
,
Blondel
,
M.
,
Louppe
,
G.
,
Prettenhofer
,
P.
,
Weiss
,
R.
,
Dubourg
,
V.
,
Vanderplas
,
J.
,
Passos
,
A.
,
Cournapeau
,
D.
,
Brucher
,
M.
,
Perrot
,
M.
, and
Duchesnay
,
É.
,
2011
, “
Scikit-Learn: Machine Learning in Python
,”
J. Mach. Learn. Res.
,
12
, pp.
2825
2830
.https://arxiv.org/abs/1201.0490v3
14.
Herman, J., and Usher, W., 2017, “
SALib: An Open-Source Python Library for Sensitivity Analysis
,”
Journal of Open Source Software
,
2
(9), p. 97.
15.
Feinberg
,
J.
, and
Langtangen
,
H. P.
,
2015
, “
Chaospy: An Open Source Tool for Designing Methods of Uncertainty Quantification
,”
J. Comput. Sci.
,
11
, pp.
46
57
.
16.
Goodwin
,
D. G.
,
Moffat
,
H. K.
, and
Speth
,
R. L.
,
2017
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes
,” Version 2.3.0.
17.
Kewlani
,
G.
,
Crawford
,
J.
, and
Iagnemma
,
K.
,
2012
, “
A Polynomial Chaos Approach to the Analysis of Vehicle Dynamics Under Uncertainty
,”
Veh. Syst. Dyn.
,
50
(5), pp.
749
774
.
18.
Saltelli
,
A.
,
Tarantola
,
S.
,
Campolongo
,
F.
, and
Ratto
,
M.
,
2004
,
Sensitivity Analysis Practice: A Guide to Assessing Scientific Models
,
Wiley
, Hoboken, NJ.
19.
Kalos
,
M. H.
, and
Whitlock
,
P. A.
,
2008
,
Monte Carlo Methods
, Physics Today, 2nd ed., Wiley, Weinheim, Germany.
20.
Turányi
,
T.
, and
Tomlin
,
A. S.
,
2015
,
Analysis of Kinetic Reaction Mechanisms
,
Springer
,
Berlin
.
21.
Saltelli
,
A.
,
Ratto
,
M.
,
Andres
,
T.
,
Campolongo
,
F.
,
Cariboni
,
J.
,
Gatelli
,
D.
,
Saisana
,
M.
, and
Tarantola
,
S.
,
2008
,
Global Sensitivity Analysis. The Primer
,
Wiley
, Chichester, UK.
22.
Burhenne
,
S.
,
Jacob
,
D.
, and
Henze
,
G. P.
,
2011
, “
Sampling Based on Sobol Sequences for Monte Carlo Techniques Applied to Building Simulations
,”
Building Simulation 2011: 12th Conference of International Building Performance Simulation Association
, Sydney, Australia, Nov. 14–16, pp.
1816
1823
.
23.
Wiener
,
N.
,
1938
, “
The Homogeneous Chaos
,”
Am. J. Math.
,
60
(
4
), pp.
897
936
.
24.
Perez
,
R. A.
,
2008
, “
Uncertainty Analysis of Computational Fluid Dynamics Via Polynomial Chaos
,”
Ph.D. thesis
, Aerospace Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA.https://vtechworks.lib.vt.edu/handle/10919/28984
25.
Lucor
,
D.
,
Xiu
,
D.
,
Su
,
C. H.
, and
Karniadakis
,
G. E.
,
2003
, “
Predictability and Uncertainty in CFD
,”
Int. J. Numer. Methods Fluids
,
43
(
5
), pp.
483
505
.https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.500
26.
Eldred
,
M.
,
2009
, “
Recent Advances in Non-Intrusive Polynomial Chaos and Stochastic Collocation Methods for Uncertainty Analysis and Design
,”
AIAA
Paper No. 2009-2274.
27.
Pettersson
,
M. P.
, 2015,
Polynomial Chaos Methods for Hyperbolic Partial Differential Equations: Numerical Techniques for Fluid Dynamics Problems in the Presence of Uncertainties
, Springer, Cham, Switzerland.
28.
Najm
,
H. N.
,
2009
, “
Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics
,”
Annu. Rev. Fluid Mech.
,
41
(
1
), pp.
35
52
.
29.
Musaefendic
,
H.
,
Mery
,
Y.
, and
Noel
,
T.
,
2015
, “
An Uncertainty Quantification Framework Coupled With a 1D Physics-Based Model for the Prediction of NOx Emissions in a RQL Combustion Chamber
,”
ASME
Paper No. GT2015-43468.
30.
Gautschi
,
W.
,
1968
, “
Construction of Gauss-Christ Quadrature Formulas of Fei
,”
Math. Comput.
,
22
(
102
), pp.
251
270
.
31.
Anstett-Collin
,
F.
,
Mara
,
T.
, and
Basset
,
M.
,
2014
, “
Application of Global Sensitivity Analysis to a Tire Model With Correlated Inputs
,”
Simul. Model. Pract. Theory
,
44
, pp.
54
62
.
32.
Sudret
,
B.
,
2008
, “
Global Sensitivity Analysis Using Polynomial Chaos Expansions
,”
Reliab. Eng. Syst. Saf.
,
93
(
7
), pp.
964
979
.
33.
Leonard
,
G.
, and
Correa
,
S.
,
1990
, “
NOx Formation in Premixed High-Pressure Lean Methane Flames
,”
Fossil Fuel Combustion Symposium: 13th Annual Energy-Sources Technology Conference and Exhibition
, NewOrleans, LA, Jan. 14–18, pp.
69
74
.
34.
Glarborg
,
P.
,
Miller
,
J. A.
, and
Kee
,
R. J.
,
1986
, “
Kinetic Modeling and Sensitivity Analysis of Nitrogen Oxide Formation in Well-Stirred Reactors
,”
Combust. Flame
,
65
(
2
), pp.
177
202
.
35.
Elkady
,
A. M.
,
Herbon
,
J.
,
Kalitan
,
D. M.
,
Leonard
,
G.
,
Akula
,
R.
,
Karim
,
H.
, and
Hadley
,
M.
,
2012
, “
Gas Turbine Emission Characteristics in Perfectly Premixed Combustion
,”
ASME J. Eng. Gas Turbines Power
,
134
(
6
), p.
061501
.
36.
Turns
,
S. R.
,
2000
,
An Introduction to Combustion: Concepts and Applications
,
McGraw-Hill Higher Education
, Singapore.
37.
Rosati
,
B.
,
2015
, “
Prediction of Emissions From Combustion Systems Using 0D and 1D Reacting Flow Models
,”
Master's thesis
, Delft University of Technology, Delft, The Netherlands.https://repository.tudelft.nl/islandora/object/uuid%3Ae4123ab3-0d3d-48cc-8b71-ada6badc83e7
38.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
, Goldenberg, M., Bowman, C. T.,
Hanson
,
R. K.
,
Song
,
S.
,
Gardiner
,
W. C.
, Jr.,
Lissianski
,
V. V.
, and
Qin
,
Z.
,
2000
, “
GRI-Mech 3.0
,” http://www.me.berkeley.edu/gri_mech/
39.
Konnov
,
A. A.
,
2009
, “
Implementation of the NCN Pathway of Prompt-NO Formation in the Detailed Reaction Mechanism
,”
Combust. Flame
,
156
(
11
), pp.
2093
2105
.
40.
Zhang
,
Y.
,
Mathieu
,
O.
,
Petersen
,
E. L.
,
Bourque
,
G.
, and
Curran
,
H. J.
,
2017
, “
Assessing the Predictions of a NOx Kinetic Mechanism on Recent Hydrogen and Syngas Experimental Data
,”
Combust. Flame
,
182
, pp.
122
141
.
41.
Dooley
,
S.
,
Burke
,
M. P.
,
Chaos
,
M.
,
Stein
,
Y.
,
Dryer
,
F. L.
,
Zhukov
,
V. P.
,
Finch
,
O.
,
Simmie
,
J. M.
, and
Curran
,
H. J.
,
2010
, “
Methyl Formate Oxidation: Speciation Data, Laminar Burning Velocities, Ignition Delay Times, and a Validated Chemical Kinetic Model
,”
Int. J. Chem. Kinet.
,
42
(
9
), pp.
527
549
.
42.
Healy
,
D.
,
Kalitan
,
D. M.
,
Aul
,
C. J.
,
Petersen
,
E. L.
,
Bourque
,
G.
, and
Curran
,
H. J.
,
2010
, “
Oxidation of C1-C5 Alkane Quinternary Natural Gas Mixtures at High Pressures
,”
Energy Fuels
,
24
(
3
), pp.
1521
1528
.
43.
Ranzi
,
E.
,
Dente
,
M.
,
Goldaniga
,
A.
,
Bozzano
,
G.
, and
Faravelli
,
T.
,
2001
, “
Lumping Procedures in Detailed Kinetic Modeling of Gasification, Pyrolysis, Partial Oxidation and Combustion of Hydrocarbon Mixtures
,”
Prog. Energy Combust. Sci.
,
27
(
1
), pp.
99
139
.
44.
Wang
,
H.
,
You
,
X.
,
Joshi
,
A. V.
,
Davis
,
S. G.
,
Laskin
,
A.
,
Egolfopoulos
,
F.
, and
Law
,
C. K.
,
2007
, “
USC Mech Version II. High-Temperature Combustion Reaction Model of H2/CO/C1-C4 Compounds
,” Combustion Kinetics Laboratory, Los Angeles, CA, accessed July 27, 2018, http://ignis.usc.edu/USC_Mech_II.htm
45.
Rezvani
,
R.
,
Denny
,
R.
, and
Mavris
,
D.
,
2009
, “
A Design-Oriented Semi-Analytical Emissions Prediction Method for Gas Turbine Combustors
,”
AIAA
Paper No. AIAA-2009-704.
46.
Stopper
,
U.
,
Meier
,
W.
,
Sadanandan
,
R.
,
Stohr
,
M.
,
Aigner
,
M.
, and
Bulat
,
G.
,
2013
, “
Experimental Study of Industrial Gas Turbine Flames Including Quantification of Pressure Influence on Flow Field, Fuel/Air Premixing and Flame Shape
,”
Combust. Flame
,
160
(
10
), pp.
2103
2118
.
47.
Göke
,
S.
,
Schimek
,
S.
,
Terhaar
,
S.
,
Reichel
,
T.
,
Göckeler
,
K.
,
Krüger
,
O.
,
Fleck
,
J.
,
Griebel
,
P.
, and
Oliver Paschereit
,
C.
,
2014
, “
Influence of Pressure and Steam Dilution on NOx and CO Emissions in a Premixed Natural Gas Flame
,”
ASME J. Eng. Gas Turbines Power
,
136
(
9
), p.
091508
.
48.
Göke
,
S.
,
Terhaar
,
S.
,
Schimek
,
S.
,
Katharina
,
G.
, and
Paschereit
,
C. O.
,
2011
, “
Combustion of Natural Gas, Hydrogen and Bio-Fuels at Ultra-Wet Conditions
,”
ASME
Paper No. GT2011-45696.
49.
FuQiang
,
L.
,
KaiYu
,
Z.
,
CunXi
,
L.
,
Yong
,
M.
,
JinHu
,
Y.
,
Gang
,
X.
, and
JunQiang
,
Z.
,
2014
, “
Numerical and Experimental Investigation on Emission Performance of a Fuel Staged Combustor
,”
Sci. China Technol. Sci.
,
57
(
10
), pp.
1941
1949
.
50.
Hao
,
N. T.
,
2014
, “
A Chemical Reactor Network for Oxides of Nitrogen Emission Prediction in Gas Turbine Combustor
,”
J. Therm. Sci.
,
23
(
3
), pp.
279
284
.
51.
De Toni
,
A.
,
Hayashi
,
T.
, and
Schneider
,
P.
,
2013
, “
A Reactor Network Model for Predicting NOx Emissions in an Industrial Natural Gas Burner
,”
J. Braz. Soc. Mech. Sci. Eng.
,
35
(
3
), pp.
199
206
.
52.
Stathopoulos
,
P.
,
Kuhn
,
P.
,
Wendler
,
J.
,
Tanneberger
,
T.
,
Terhaar
,
S.
,
Paschereit
,
C. O.
,
Schmalhofer
,
C.
,
Griebel
,
P.
, and
Aigner
,
M.
,
2017
, “
Emissions of a Wet Premixed Flame of Natural Gas and a Mixture With Hydrogen at High Pressure
,”
ASME J. Eng. Gas Turbines Power
,
139
(
4
), p.
041507
.
53.
Monaghan
,
R. F. D.
,
Tahir
,
R.
,
Bourque
,
G.
,
Gordon
,
R. L.
,
Cuoci
,
A.
,
Faravelli
,
T.
,
Frassoldati
,
A.
, and
Curran
,
H. J.
,
2014
, “
Detailed Emissions Prediction for a Turbulent Swirling Nonpremixed Flame
,”
Energy Fuels
,
28
(
2
), pp.
1470
1488
.
54.
Monaghan
,
R. F. D.
,
Tahir
,
R.
,
Cuoci
,
A.
,
Bourque
,
G.
,
Furi
,
M.
,
Gordon
,
R. L.
,
Faravelli
,
T.
,
Frassoldati
,
A.
, and
Curran
,
H. J.
,
2012
, “
Detailed Multi-Dimensional Study of Pollutant Formation in a Methane Diffusion Flame
,”
Energy Fuels
,
26
(
3
), pp.
1598
1611
.
55.
Varga
,
L.
,
Szabó
,
B.
,
Zsély
,
I. G.
,
Zempléni
,
A.
, and
Turányi
,
T.
,
2011
, “
Numerical Investigation of the Uncertainty of Arrhenius Parameters
,”
J. Math. Chem.
,
49
(
8
), pp.
1798
1809
.
56.
Nagy
,
T.
, and
Turányi
,
T.
,
2012
, “
Determination of the Uncertainty Domain of the Arrhenius Parameters Needed for the Investigation of Combustion Kinetic Models
,”
Reliab. Eng. Syst. Saf.
,
107
, pp.
29
34
.
57.
Baulch
,
D. L.
,
Bowman
,
C. T.
,
Cobos
,
C. J.
,
Cox
,
R. A.
,
Just
,
T.
,
Kerr
,
J. A.
,
Pilling
,
M. J.
,
Stocker
,
D.
,
Troe
,
J.
,
Tsang
,
W.
,
Walker
,
R.
, and
Warnatz
,
J.
,
2005
, “
Evaluated Kinetic Data for Combustion Modeling: Supplement II
,”
J. Phys. Chem. Ref. Data
,
34
(
3
), pp.
757
641
.
58.
Nagy
,
T.
, and
Turanyi
,
T.
,
2011
, “
Uncertainty of Arrhenius Parameters
,”
Int. J. Chem. Kinet.
,
43
(
7
), pp.
359
378
.
59.
Olm
,
C.
,
Varga
,
T.
,
Valkó
,
É.
,
Curran
,
H. J.
, and
Turányi
,
T.
,
2017
, “
Uncertainty Quantification of a Newly Optimized Methanol and Formaldehyde Combustion Mechanism
,”
Combust. Flame
,
186
, pp.
45
64
.
60.
Zsely
,
I. G.
,
Zador
,
J.
, and
Turanyi
,
T.
,
2008
, “
Uncertainty Analysis of NO Production During Methane Combustion
,”
Int. J. Chem. Kinet.
,
40
(
11
), pp.
754
768
.
You do not currently have access to this content.