Thermoacoustic instabilities are a major threat for modern gas turbines. Frequency-domain-based stability methods, such as network models and Helmholtz solvers, are common design tools because they are fast compared to compressible flow computations. They result in an eigenvalue problem, which is nonlinear with respect to the eigenvalue. Thus, the influence of the relevant parameters on mode stability is only given implicitly. Small changes in some model parameters, may have a great impact on stability. The assessment of how parameter uncertainties propagate to system stability is therefore crucial for safe gas turbine operation. This question is addressed by uncertainty quantification. A common strategy for uncertainty quantification in thermoacoustics is risk factor analysis. One general challenge regarding uncertainty quantification is the sheer number of uncertain parameter combinations to be quantified. For instance, uncertain parameters in an annular combustor might be the equivalence ratio, convection times, geometrical parameters, boundary impedances, flame response model parameters, etc. A new and fast way to obtain algebraic parameter models in order to tackle the implicit nature of the problem is using adjoint perturbation theory. This paper aims to further utilize adjoint methods for the quantification of uncertainties. This analytical method avoids the usual random Monte Carlo (MC) simulations, making it particularly attractive for industrial purposes. Using network models and the open-source Helmholtz solver PyHoltz, it is also discussed how to apply the method with standard modeling techniques. The theory is exemplified based on a simple ducted flame and a combustor of EM2C laboratory for which experimental data are available.

References

1.
Lieuwen
,
T. C.
, and
Yang
,
V.
, eds.,
2005
,
Combustion Instabilities in Gas Turbine Engines
(Progress in Astronautics and Aeronautics), Vol.
210
,
AIAA
, Reston, VA.
2.
Staffelbach
,
G.
,
Gicquel
,
L. Y. M.
, and
Poinsot
,
T.
,
2009
, “
Large Eddy Simulation of Self-Excited Azimuthal Modes in Annular Combustors
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
2909
2916
.
3.
Wolf
,
P.
,
Balakrishnan
,
R.
,
Staffelbach
,
G.
,
Gicquel
,
L. Y. M.
, and
Poinsot
,
T.
,
2012
, “
Using LES to Study Reacting Flows and Instabilities in Annular Combustion Chambers
,”
Flow Turbul. Combust.
,
88
(1–2), pp.
191
206
.
4.
Dowling
,
A. P.
,
1997
, “
Nonlinear Self-Excited Oscillations of a Ducted Flame
,”
J. Fluid Mech.
,
346
, pp.
271
290
.
5.
Evesque
,
S.
, and
Polifke
,
W.
,
2002
, “
Low-Order Acoustic Modelling for Annular Combustors: Validation and Inclusion of Modal Coupling
,”
ASME
Paper No. GT2002-30064.
6.
Schuermans
,
B.
,
Bellucci
,
V.
, and
Paschereit
,
C. O.
,
2003
, “
Thermoacoustic Modeling and Control of Multi Burner Combustion Systems
,”
ASME
Paper No. GT2003-38688.
7.
Sattelmayer
,
T.
, and
Polifke
,
W.
,
2003
, “
Assessment of Methods for the Computation of the Linear Stability of Combustors
,”
Combust. Sci. Technol.
,
175
(3), pp.
453
476
.
8.
Nicoud
,
F.
,
Benoit
,
L.
,
Sensiau
,
C.
, and
Poinsot
,
T.
,
2007
, “
Acoustic Modes in Combustors With Complex Impedances and Multidimensional Active Flames
,”
AIAA J.
,
45
(
2
), pp.
426
441
.
9.
Campa
,
G.
, and
Camporeale
,
S. M.
,
2014
, “
Prediction of the Thermoacoustic Combustion Instabilities in Practical Annular Combustors
,”
ASME J. Eng. Gas Turbines Power
,
136
(
9
), p.
091504
.
10.
Schulze
,
M.
,
Hummel
,
T.
,
Klarmann
,
N.
,
Berger
,
F.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2016
, “
Linearized Euler Equations for the Prediction of Linear High-Frequency Stability in Gas Turbine Combustors
,”
ASME J. Eng. Gas Turbines Power
,
139
(3), p. 031510.
11.
Mensah
,
G. A.
, and
Moeck
,
J. P.
,
2017
, “
Acoustic Damper Placement and Tuning for Annular Combustors: An Adjoint-Based Optimization Study
,”
ASME J. Eng. Gas Turbines Power
,
139
(
6
), p.
061501
.
12.
Magri
,
L.
,
Bauerheim
,
M.
, and
Juniper
,
M. P.
,
2016
, “
Stability Analysis of Thermo-Acoustic Nonlinear Eigenproblems in Annular Combustors—Part I: Sensitivity
,”
J. Comput. Phys.
,
325
, pp.
395
410
.
13.
Magri
,
L.
, and
Juniper
,
M. P.
,
2013
, “
Sensitivity Analysis of a Time-Delayed Thermo-Acoustic System Via an Adjoint-Based Approach
,”
J. Fluid Mech.
,
719
, pp.
183
202
.
14.
Magri
,
L.
,
Bauerheim
,
M.
,
Nicoud
,
F.
,
Ihme
,
M.
, and
Juniper
,
M. P.
,
2016
, “
Efficient Uncertainty Quantification of Thermo-Acoustic Stability
,”
Symposium Thermoacoustic Instabilities in Gas Turbines and Rocket Engines
, Munich, Germany, May 30–June 2, Paper No. GTRE-041.
15.
Silva
,
C. F.
,
Runte
,
T.
,
Polifke
,
W.
, and
Magri
,
L.
,
2016
, “
Uncertainty Quantification of Growth Rates of Thermoacoustic Instability by an Adjoint Helmholtz Solver
,”
ASME
Paper No. GT2016-57659.
16.
Poinsot
,
T.
,
2013
, “
Simulation Methodologies and Open Questions for Acoustic Combustion Instability Studies
,”
Annual Research Briefs, Center for Turbulence Research
, Stanford University, Stanford, CA, pp.
179
188
https://cdn.toro.com/en/~/media/files/toro/professional-contractor/landscape-drip/turbo-sc-plus/turbo-sc-ss.ashx.
17.
Ndiaye
,
A.
,
Bauerheim
,
M.
,
Moreau
,
S.
, and
Nicoud
,
F.
,
2015
, “
Uncertainty Quantification of Thermoacoustic Instabilities in a Swirled Stabilized Combustor
,”
ASME
Paper No. GT2015-44133.
18.
Bauerheim
,
M.
,
Ndiaye
,
A.
,
Constantine
,
P.
,
Iaccarino
,
G.
,
Moreau
,
S.
, and
Nicoud
,
F.
,
2014
, “
Uncertainty Quantification of Thermo-Acoustic Instabilities in Annular Combustors
,”
Summer Program
, Center for Turbulence Research, Stanford University, Stanford, CA, July 6–Aug. 1.https://web.stanford.edu/group/ctr/Summer/SP14/06_Combustion/11_bauerheim.pdf
19.
Bauerheim
,
M.
,
Nicoud
,
F.
, and
Poinsot
,
T.
,
2016
, “
Progress in Analytical Methods to Predict and Control Azimuthal Combustion Instability Modes in Annular Chambers
,”
Phys. Fluids
,
28
(2), p.
021303
.
20.
Fernández
,
F. M.
,
2000
,
Introduction to Perturbation Theory in Quantum Mechanics
, 1st ed.,
CRC Press
, Boca Raton, FL.
21.
Luchini
,
P.
, and
Bottaro
,
A.
,
2014
, “
Adjoint Equations in Stability Analysis
,”
Annu. Rev. Fluid Mech.
,
46
, pp.
493
517
.
22.
Chantrasmi
,
T.
, and
Iaccarino
,
G.
,
1957
, “
Forward and Backward Uncertainty Propagation for Discontinuous System Response Using the Pade-Legendre Method
,”
Int. J. Uncertainty Quantif.
,
2
(2), pp.
125
143
.
23.
Jaynes
,
E.
,
1957
, “
Information Theory and Statistical Mechanics
,”
Phys. Rev.
,
106
, pp.
620
630
.
24.
Crocco
,
L.
, and
Mitchell
,
C.
,
1969
, “
Nonlinear Periodic Oscillations in Rocket Motors With Distributed Combustion
,”
Combust. Sci. Technol.
,
1
(
2
), pp.
146
169
.
25.
Palies
,
P.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2010
, “
The Combined Dynamics of Swirler and Turbulent Premixed Swirling Flames
,”
Combust. Flame
,
157
(
9
), pp.
1698
1717
.
26.
Palies
,
P.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2011
, “
Nonlinear Combustion Instability Analysis Based on the Flame Describing Function Applied to Turbulent Premixed Swirling Flames
,”
Combust. Flame
,
158
(
10
), pp.
1980
1991
.
27.
Silva
,
C. F.
,
Nicoud
,
F.
,
Schuller
,
T.
,
Durox
,
D.
, and
Candel
,
S.
,
2013
, “
Combining a Helmholtz Solver With the Flame Describing Function to Assess Combustion Instability in a Premixed Swirled Combustor
,”
Combust. Flame
,
160
(
9
), pp.
1743
1754
.
28.
Silva
,
C.
,
Magri
,
L.
,
Runte
,
T.
, and
Polifke
,
W.
,
2016
, “
Uncertainty Quantification of Growth Rates of Thermoacoustic Instability by an Adjoint Helmholtz Solver
,”
ASME J. Eng. Gas Turbines Power
,
139
(
1
), p.
011901
.
29.
Gustavsen
,
B.
, and
Semlyen
,
A.
,
1999
, “
Rational Approximation of Frequency Domain Responses by Vector Fitting
,”
IEEE Trans. Power Delivery
,
14
(
3
), pp.
1052
1061
.
30.
Gustavsen
,
B.
,
2006
, “
Improving the Pole Relocating Properties of Vector Fitting
,”
IEEE Trans. Power Delivery
,
21
(
3
), pp.
1587
1592
.
You do not currently have access to this content.