This paper deals with a numerical study aimed at the validation of a computational procedure for the aerothermal characterization of preswirl systems employed in axial gas turbines. The numerical campaign focused on an experimental facility which models the flow field inside a direct-flow preswirl system. Steady and unsteady simulation techniques were adopted in conjunction with both a standard two-equation Reynolds-averaged Navier–Stokes (RANS)/unsteady RANS (URANS) modeling and more advanced approaches such as the scale-adaptive-simulation (SAS) principle, the stress-blended eddy simulation (SBES), and large eddy simulation (LES). Overall, the steady-state computational fluid dynamics (CFD) predictions are in reasonable good agreement with the experimental evidences even though they are not able to confidently mimic the experimental swirl and pressure behavior in some regions. Scale-resolved approaches improve the computations accuracy significantly especially in terms of static pressure distribution and heat transfer on the rotating disk. Although the use of direct turbulence modeling would in principle increase the insight in the physical phenomenon, from a design perspective, the trade-off between accuracy and computational costs is not always favorable.

References

1.
Wilson
,
M.
,
Pilbrow
,
P.
, and
Owen
,
M. J.
,
1997
, “
Flow and Heat Transfer in a Preswirl Rotor-Stator System
,”
ASME J. Turbomach.
,
119
(
2
), pp.
364
373
.
2.
Karabay
,
H.
,
Pilbrow
,
R.
,
Wilson
,
M.
, and
Owen
,
M. J.
,
2000
, “
Performance of Pre-Swirl Rotating-Disc Systems
,”
ASME J. Eng. Gas Turbines Power
,
122
(
3
), pp.
442
450
.
3.
Dittmann
,
M.
,
Geis
,
T.
,
Schramm
,
V.
,
Kim
,
S.
, and
Wittig
,
S.
,
2001
, “
Discharge Coefficients of a Pre-Swirl System in Secondary Air
,”
ASME
Paper No. 2001-GT-0122.
4.
Yan
,
Y.
,
Gord
,
M.
,
Lock
,
G. D.
,
Wilson
,
M.
, and
Owen
,
M.
,
2003
, “
Fluid Dynamics of a Pre-Swirl Rotor-Stator System
,”
ASME. J. Turbomach.
,
125
(4), pp. 641–647.
5.
Chew
,
J.
,
Hills
,
N.
,
Khalatov
,
S.
,
Scanlon
,
T.
, and
Turner
,
B.
,
2003
, “
Measurement and Analysis of Flow in a Pre-Swirled Cooling Air Delivery System
,”
ASME
Paper No. GT2003-38084.
6.
Lock
,
G.
,
Yan
,
Y.
,
Newton
,
P.
,
Wilson
,
M.
, and
Owen
,
J. M.
,
2005
, “
Heat Transfer Measurements Using Liquid Crystals in a Preswirl Rotating-Disk System
,”
ASME J. Eng. Gas Turbines Power
,
127
(
2
), pp.
375
382
.
7.
Lewis
,
P.
,
2008
, “
Pre-Swirl Rotor-Stator Systems: Flow and Heat Transfer
,”
Ph.D. thesis
, University of Bath, Bath, UK.
8.
Javiya
,
U.
,
Chew
,
J.
,
Hills
,
N.
,
Zhou
,
L.
,
Wilson
,
M.
, and
Lock
,
G.
,
2010
, “
CFD Analysis of Flow and Heat Transfer in a Direct Transfer Pre-Swirl System
,”
ASME
Paper No. GT2010-22964.
9.
Karnahl
,
J.
,
von Wolfersdorf
,
J.
,
Tham
,
K. M.
,
Wilson
,
M.
, and
Lock
,
G.
,
2011
, “
CFD Simulations of Flow and Heat Transfer in a Pre-Swirl System: Influence of Rotating-Stationary Domain Interface
,”
ASME
Paper No. GT2011-45085.
10.
Bianchini
,
C.
,
Andreini
,
A.
,
Andrei
,
L.
, and
Facchini
,
B.
,
2013
, “
Numerical Benchmark of Non Conventional RANS Turbulence Models for Film and Effusion Flows
,”
ASME J. Turbomach.
,
135
(
4
), p.
041026
.
11.
Da Soghe
,
R.
,
Bianchini
,
C.
,
Andreini
,
A.
,
Mazzei
,
L.
, and
Facchini
,
B.
,
2015
, “
Heat Transfer Augmentation Due to Coolant Extraction on the Cold Side of Active Clearance Control Manifolds
,”
ASME J. Eng. Gas Turbines Power
,
138
(
2
), p.
021507
.
12.
Owen
,
J. M.
, and
Rogers
,
M.
,
1989
,
Flow and Heat Transfer in Rotating-Disk Systems
(Rotor–Stator Systems), Vol.
1
,
Wiley
,
New York
.
13.
Arolla
,
S.
, and
Durbin
,
P.
,
2013
, “
Modeling Rotation and Curvature Effects Within Scalar Eddy Viscosity
,”
Int. J. Heat Fluid Flow
,
39
, pp.
78
89
.
14.
Elena
,
L.
, and
Schiestel
,
R.
,
1996
, “
Turbulence Modeling of Rotating Confined Flows
,”
Int. J. Heat Fluid Flow
,
17
(3), pp.
283
289
.
15.
ANSYS,
2016
, “
ANSYS CFX 17 Modelling Guide
,” ANSYS Inc., Canonsburg, PA.
16.
Gupta
,
K.
,
Ramerth
,
D.
, and
Ramachandran
,
D.
,
2008
, “
Numerical Simulation of TOBI Flow—Analysis of the Cavity Between a Seal-Plate and HPT Disk With Pumping Vanes
,”
ASME
Paper No. GT2008-50739.
17.
Benim
,
A. C.
,
Cagan
,
M.
,
Bonhoff
,
B.
, and
Brillert
,
D.
,
2005
, “
Simulation of Flow in Gas Turbine Pre-Swirl Systems With Emphasis on Rotor-Stator Interface Treatment
,”
IASME/WSEAS International Conference on Fluid Mechanics and Aerodynamics
, Corfu, Greece, Aug. 20–22, pp. 206–211.
You do not currently have access to this content.