Solid particle ingestion is one of the principal degradation mechanisms in the compressor and turbine sections of gas turbines. In particular, in industrial applications, the microparticles not captured by the air filtration system can cause deposits on blading and, consequently, result in a decrease in compressor performance. In the literature, there are some studies related to the fouling phenomena in transonic compressors, but in industrial applications (heavy-duty compressors, pump stations, etc.), the subsonic compressors are widespread. It is highly important for the manufacturer to gather information about the fouling phenomenon related to this type of compressor. This paper presents three-dimensional (3D) numerical simulations of the microparticle ingestion (0.15–1.50 μm) in a multistage (i.e., eight stage) subsonic axial compressor, carried out by means of a commercial computational fluid dynamic (CFD) code. Particles of this size can follow the main air flow with relatively little slip, while being impacted by flow turbulence. It is of great interest to the industry to determine which zones of the compressor blades are impacted by these small particles. Particle trajectory simulations use a stochastic Lagrangian tracking method that solves the equations of motion separately from the continuous phase. The adopted computational strategy allows the evaluation of particle deposition in a multistage axial compressor thanks to the use of a mixing plane approach to model the rotor/stator interaction. The compressor numerical model and the discrete phase model are set up and validated against the experimental and numerical data available in the literature. The number of particles and sizes is specified in order to perform a quantitative analysis of the particle impacts on the blade surface. The blade zones affected by particle impacts and the kinematic characteristics (velocity and angle) of the impact of micrometric and submicrometric particles with the blade surface are shown. Both blade zones affected by particle impact and deposition are analyzed. The particle deposition is established by using the quantity called sticking probability (SP), adopted from the literature. The SP links the kinematic characteristics of particle impact on the blade with the fouling phenomenon. The results show that microparticles tend to follow the flow by impacting on the compressor blades at full span. The suction side (SS) of the blade is only affected by the impacts of the smallest particles. Particular fluid dynamic phenomena, such as corner separations and clearance vortices, strongly influence the impact location of the particles. The impact and deposition trends decrease according to the stages. The front stages appear more affected by particle impact and deposition than the rear ones.
Skip Nav Destination
Article navigation
August 2018
Research-Article
Quantitative Computational Fluid Dynamics Analyses of Particle Deposition in a Heavy-Duty Subsonic Axial Compressor
Nicola Aldi,
Nicola Aldi
Dipartimento di Ingegneria,
Università degli Studi di Ferrara,
Ferrara 44122, Italy
Università degli Studi di Ferrara,
Ferrara 44122, Italy
Search for other works by this author on:
Nicola Casari,
Nicola Casari
Dipartimento di Ingegneria,
Università degli Studi di Ferrara,
Ferrara 44122, Italy
Università degli Studi di Ferrara,
Ferrara 44122, Italy
Search for other works by this author on:
Devid Dainese,
Devid Dainese
Dipartimento di Ingegneria,
Università degli Studi di Ferrara,
Ferrara 44122, Italy
Università degli Studi di Ferrara,
Ferrara 44122, Italy
Search for other works by this author on:
Mirko Morini,
Mirko Morini
Dipartimento di Ingegneria e Architettura,
Università degli Studi di Parma,
Parma 43121, Italy
Università degli Studi di Parma,
Parma 43121, Italy
Search for other works by this author on:
Michele Pinelli,
Michele Pinelli
Dipartimento di Ingegneria,
Università degli Studi di Ferrara,
Ferrara 44122, Italy
Università degli Studi di Ferrara,
Ferrara 44122, Italy
Search for other works by this author on:
Pier Ruggero Spina,
Pier Ruggero Spina
Dipartimento di Ingegneria,
Università degli Studi di Ferrara,
Ferrara 44122, Italy
Università degli Studi di Ferrara,
Ferrara 44122, Italy
Search for other works by this author on:
Alessio Suman
Alessio Suman
Dipartimento di Ingegneria,
Università degli Studi di Ferrara,
Ferrara 44122, Italy
Università degli Studi di Ferrara,
Ferrara 44122, Italy
Search for other works by this author on:
Nicola Aldi
Dipartimento di Ingegneria,
Università degli Studi di Ferrara,
Ferrara 44122, Italy
Università degli Studi di Ferrara,
Ferrara 44122, Italy
Nicola Casari
Dipartimento di Ingegneria,
Università degli Studi di Ferrara,
Ferrara 44122, Italy
Università degli Studi di Ferrara,
Ferrara 44122, Italy
Devid Dainese
Dipartimento di Ingegneria,
Università degli Studi di Ferrara,
Ferrara 44122, Italy
Università degli Studi di Ferrara,
Ferrara 44122, Italy
Mirko Morini
Dipartimento di Ingegneria e Architettura,
Università degli Studi di Parma,
Parma 43121, Italy
Università degli Studi di Parma,
Parma 43121, Italy
Michele Pinelli
Dipartimento di Ingegneria,
Università degli Studi di Ferrara,
Ferrara 44122, Italy
Università degli Studi di Ferrara,
Ferrara 44122, Italy
Pier Ruggero Spina
Dipartimento di Ingegneria,
Università degli Studi di Ferrara,
Ferrara 44122, Italy
Università degli Studi di Ferrara,
Ferrara 44122, Italy
Alessio Suman
Dipartimento di Ingegneria,
Università degli Studi di Ferrara,
Ferrara 44122, Italy
Università degli Studi di Ferrara,
Ferrara 44122, Italy
1Corresponding author.
Contributed by the Turbomachinery Committee of ASME for publication in the JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER. Manuscript received August 9, 2017; final manuscript received September 21, 2017; published online April 11, 2018. Editor: David Wisler.
J. Eng. Gas Turbines Power. Aug 2018, 140(8): 082601 (15 pages)
Published Online: April 11, 2018
Article history
Received:
August 9, 2017
Revised:
September 21, 2017
Citation
Aldi, N., Casari, N., Dainese, D., Morini, M., Pinelli, M., Spina, P. R., and Suman, A. (April 11, 2018). "Quantitative Computational Fluid Dynamics Analyses of Particle Deposition in a Heavy-Duty Subsonic Axial Compressor." ASME. J. Eng. Gas Turbines Power. August 2018; 140(8): 082601. https://doi.org/10.1115/1.4038608
Download citation file:
Get Email Alerts
Cited By
Condenser Retrofit in Leibstadt Nuclear Power Plant (BWR) - Far Beyond a Standard Modular Solution
J. Eng. Gas Turbines Power
The Manufacturing and Experimental Validation of a Nickel Superalloy Double-Wall, Effusion Test Specimen
J. Eng. Gas Turbines Power
Prediction Enhancement of Machine Learning Using Time Series Modeling in Gas Turbines
J. Eng. Gas Turbines Power
Innovative Air Bypass System For Low-Emission Multi Can Combustors
J. Eng. Gas Turbines Power
Related Articles
Investigation of Blade Tip Interaction With Casing Treatment in a Transonic Compressor—Part I: Particle Image Velocimetry
J. Turbomach (January,2011)
Prediction of the Nonuniform Tip Clearance Effect on the Axial Compressor Flow Field
J. Fluids Eng (May,2010)
Impact of Manufacturing Variability and Nonaxisymmetry on High-Pressure Compressor Stage Performance
J. Eng. Gas Turbines Power (March,2012)
An Innovative Method for the Evaluation of Particle Deposition Accounting for Rotor/Stator Interaction
J. Eng. Gas Turbines Power (May,2017)
Related Proceedings Papers
Related Chapters
Fans and Air Handling Systems
Thermal Management of Telecommunications Equipment
Outlook
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Introduction
Design and Analysis of Centrifugal Compressors