Can-annular combustors consist of a set of independent cans, connected on the upstream side to the combustor plenum and on the downstream side to the turbine inlet, where a transition duct links the round geometry of each can with the annular segment of the turbine inlet. Each transition duct is open on the sides toward the adjacent transition ducts, so that neighboring cans are acoustically connected through a so-called cross-talk open area. This theoretical, numerical, and experimental work discusses the effect that this communication has on the thermoacoustic frequencies of the combustor. We show how this communication gives rise to axial and azimuthal modes, and that these correspond to particularly synchronized states of axial thermoacoustic oscillations in each individual can. We show that these combustors typically show clusters of thermoacoustic modes with very close frequencies and that a slight loss of rotational symmetry, e.g., a different acoustic response of certain cans, can lead to mode localization. We corroborate the predictions of azimuthal modes, clusters of eigenmodes, and mode localization with experimental evidence.

References

1.
Pennell
,
D. A.
,
Bothien
,
M. R.
,
Ciani
,
A.
,
Granet
,
V.
,
Singla
,
G.
,
Thorpe
,
S.
,
Wickstroem
,
A.
,
Oumejjoud
,
K.
, and
Yaquinto
,
M.
,
2017
, “
An Introduction to the Ansaldo GT36 Constant Pressure Sequential Combustor
,”
ASME
Paper No. GT2017-64790.
2.
Noiray
,
N.
,
Bothien
,
M.
, and
Schuermans
,
B.
,
2011
, “
Investigation of Azimuthal Staging Concepts in Annular Gas Turbines
,”
Combust. Theory Modell.
,
15
(
5
), pp.
585
606
.
3.
Connor
,
J. O.
,
Acharya
,
V.
, and
Lieuwen
,
T.
,
2015
, “
Transverse Combustion Instabilities: Acoustic, Fluid Mechanic, and Flame Processes
,”
Prog. Energy Combust. Sci.
,
49
, pp.
1
39
.
4.
Bothien
,
M.
,
Noiray
,
N.
, and
Schuermans
,
B.
,
2015
, “
Analysis of Azimuthal Thermo-Acoustic Modes in Annular Gas Turbine Combustion Chambers
,”
ASME J. Eng. Gas Turbines Power
,
137
(
6
), p.
061505
.
5.
Bauerheim
,
M.
,
Nicoud
,
F.
, and
Poinsot
,
T.
,
2016
, “
Progress in Analytical Methods to Predict and Control Azimuthal Combustion Instability Modes in Annular Chambers
,”
Phys. Fluids
,
28
(
2
), p.
021303
.
6.
Krebs
,
W.
,
Bethke
,
S.
,
Lepers
,
J.
,
Flohr
,
P.
,
Prade
,
B.
,
Johnson
,
C.
, and
Sattinger
,
S.
,
2005
, “
Thermoacoustic Design Tools and Passive Control: Siemens Power Generation Approaches
,”
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling
(Progress in Astronautics and Aeronautics),
T.
Lieuwen
and
V.
Yang
, eds.,
American Institute of Aeronautics and Astronautics
,
Arlington, TX
, pp.
89
112
.
7.
Macquisten
,
M. A.
,
Whiteman
,
M.
, and
Moran
,
A. J.
,
2004
, “
Application of Low Order Thermo-Acoustic Network to DLE Staged Combustor
,”
ASME
Paper No. GT2004-54161.
8.
Kaufmann
,
P.
,
Krebs
,
W.
,
Valdes
,
R.
, and
Wever
,
U.
,
2008
, “
3D Thermoacoustic Properties of Single Can and Multi Can Combustor Configurations
,”
ASME
Paper No. GT2008-50755.
9.
Farisco
,
F.
,
Panek
,
L.
,
Janus
,
B.
, and
Kok
,
J. B. W.
,
2015
, “
Numerical Investigation of the Thermo-Acoustic Influence of the Turbine on the Combustor
,”
ASME
Paper No. GT2015-42071.
10.
Farisco
,
F.
,
Panek
,
L.
, and
Kok
,
J. B. W.
,
2016
, “
Thermo-Acoustic Cross-Talk Between Cans in a Can-Annular Combustor
,”
International Symposium on Thermoacoustic Instabilities in Gas Turbines and Rocket Engines
, Munich, Germany, May 30–June 2, pp.
1
12
.
11.
Panek
,
L.
,
Huth
,
M.
, and
Farisco
,
F.
,
2017
, “
Thermo-Acoustic Characterization of Can-Can Interaction of a Can-Annular Combustion System Based on Unsteady CFD LES Simulation
,”
First Global Power and Propulsion Forum
, Zurich, Switzerland, Jan. 16–18, Paper No. GPPF-2017-81.
12.
Farisco
,
F.
,
Panek
,
L.
, and
Kok
,
J. B.
,
2017
, “
Thermo-Acoustic Cross-Talk Between Cans in a Can-Annular Combustor
,”
Int. J. Spray Combust. Dyn.
,
9
(
4
), pp.
452
469
.
13.
Stow
,
S. R.
, and
Dowling
,
A. P.
,
2003
, “
Modelling of Circumferential Modal Coupling Due to Helmholtz Resonators
,”
ASME
Paper No. GT2003-38168.
14.
Mensah
,
G. A.
, and
Moeck
,
J. P.
,
2016
, “
Efficient Computation of Thermoacoustic Modes in Annular Combustion Chambers Based on Bloch-Wave Theory
,”
ASME J. Eng. Gas Turbines Power
,
138
(
8
), p.
081502
.
15.
Bauerheim
,
M.
,
Cazalens
,
M.
, and
Poinsot
,
T.
,
2015
, “
A Theoretical Study of Mean Azimuthal Flow and Asymmetry Effects on Thermo-Acoustic Modes in Annular Combustors
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3219
3227
.
16.
Ghirardo
,
G.
,
Boudy
,
F.
, and
Bothien
,
M. R.
,
2018
, “
Amplitude Statistics Prediction in Thermoacoustics
,”
J. Fluid Mech.
,
844
, pp.
216
246
.
17.
Brillouin
,
L.
,
1953
,
Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices
, 2nd ed.,
Dover Publications
, Mineola, NY, pp.
139
140
.
18.
Munjal
,
M.
,
1987
,
Acoustics of Ducts and Mufflers
,
Wiley
, Hoboken, NJ.
19.
Bender
,
C.
, and
Orszag
,
S.
,
1978
,
Advanced Mathematical Methods for Scientists and Engineers
,
McGraw-Hill Book
, New York.
20.
Miller
,
P.
,
2006
,
Applied Asymptotic Analysis
,
American Mathematical Society
, Providence, RI.
21.
Stow
,
S. R.
,
Dowling
,
A. P.
, and
Hynes
,
T. P.
,
2002
, “
Reflection of Circumferential Modes in a Choked Nozzle
,”
J. Fluid Mech.
,
467
, pp.
215
239
.
22.
Marble
,
F. E.
, and
Candel
,
S.
,
1977
, “
Acoustic Disturbance From Gas Non-Uniformities Convected Through a Nozzle
,”
J. Sound Vib.
,
55
(
2
), pp.
225
243
.
23.
Bauerheim
,
M.
,
Duran
,
I.
,
Livebardon
,
T.
,
Wang
,
G.
,
Moreau
,
S.
, and
Poinsot
,
T.
,
2016
, “
Transmission and Reflection of Acoustic and Entropy Waves Through a Stator-Rotor Stage
,”
J. Sound Vib.
,
374
, pp.
260
278
.
24.
Morgans
,
A. S.
, and
Duran
,
I.
,
2016
, “
Entropy Noise: A Review of Theory, Progress and Challenges
,”
Int. J. Spray Combust. Dyn.
,
8
(
4
), pp.
285
298
.
25.
Trefethen
,
L. N.
,
2000
,
Spectral Methods in MATLAB
,
Society for Industrial and Applied Mathematics
, Philadelphia, PA.
26.
Krebs
,
W.
,
Walz
,
G.
,
Flohr
,
P.
, and
Hoffmann
,
S.
,
2001
, “
Modal Analysis of Annular Combustors: Effect of Burner Impedance
,”
ASME
Paper No. GT2001-GT-0042.
27.
Morse
,
P. M.
, and
Feshback
,
H.
,
1953
,
Methods of Theoretical Physics
, Vol.
1
,
McGraw-Hill
,
New York
.
28.
Schuermans
,
B.
,
Bellucci
,
V.
, and
Paschereit
,
C. O.
,
2003
, “
Thermoacoustic Modeling and Control of Multi Burner Combustion Systems
,”
ASME
Paper No. 2003-GT-38688
.
29.
Gray
,
R. M.
,
2006
, “
Toeplitz and Circulant Matrices: A Review
,”
Found. Trends Commun. Inf. Theory
,
2
(
3
), pp.
155
239
.
30.
Moeck
,
J. P.
,
Paul
,
M.
, and
Paschereit
,
C. O.
,
2010
, “
Thermoacoustic Instabilities in an Annular Rijke Tube
,”
ASME
Paper No. GT2010-23577.
31.
Triantafyllou
,
M.
, and
Triantafyllou
,
G.
,
1991
, “
Frequency Coalescence and Mode Localization Phenomena: A Geometric Theory
,”
J. Sound Vib.
,
150
(
3
), pp.
485
500
.
32.
Schuermans
,
B.
,
Polifke
,
W.
, and
Paschereit
,
C. O.
,
1999
, “
Modeling Transfer Matrices of Premixed Flames and Comparison With Experimental Results
,”
ASME
Paper No. 99-GT-132.
33.
Goldmeer
,
J.
,
Vandervort
,
C.
, and
Sternberg
,
J.
,
2017
, “
New Capabilities and Developments in GE's DLN 2.6 Combustion Systems
,”
Power-Gen International
, Las Vegas, NV, Dec. 5–7, pp. 1–15.
34.
Sewell
,
J. B.
, and
Sobieski
,
P. A.
,
2005
, “
Monitoring of Combustion Instabilities: Calpine's Experience
,”
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling
(Progress in Astronautics and Aeronautics),
T. C.
Lieuwen
and
V.
Yang
, eds.,
American Institute of Aeronautics and Astronautics
,
Arlington, TX
, pp.
147
162
.
35.
Pierre
,
C.
, and
Cha
,
D.
,
1989
, “
Strong Mode Localization in Nearly Periodic Disordered Structures
,”
AIAA J.
,
27
(
2
), pp.
227
241
.
You do not currently have access to this content.