In this paper, we propose a two-step methodology to evaluate the convective heat flux along the rotor casing using an engine-scalable approach based on discrete Green's functions . The first step consists in the use of an inverse heat transfer technique to retrieve the heat flux distribution on the shroud inner wall by measuring the temperature of the outside wall; the second step is the calculation of the convective heat flux at engine conditions, using the experimental heat flux and the Green functions engine-scalable technique. Inverse methodologies allow the determination of boundary conditions; in this case, the inner casing surface heat flux, based on measurements from outside of the system, which prevents aerothermal distortion caused by routing the instrumentation into the test article. The heat flux, retrieved from the inverse heat transfer methodology, is related to the rotor tip gap. Therefore, for a given geometry and tip gap, the pressure and temperature can also be retrieved. In this work, the digital filter method is applied in order to take advantage of the response of the temperature to heat flux pulses. The discrete Green's function approach employs a matrix to relate an arbitrary temperature distribution to a series of pulses of heat flux. In this procedure, the terms of the Green's function matrix are evaluated with the output of the inverse heat transfer method. Given that key dimensionless numbers are conserved, the Green's functions matrix can be extrapolated to engine-like conditions. A validation of the methodology is performed by imposing different arbitrary heat flux distributions, to finally demonstrate the scalability of the Green's function method to engine conditions. A detailed uncertainty analysis of the two-step routine is included based on the value of the pulse of heat flux, the temperature measurement uncertainty, the thermal properties of the material, and the physical properties of the rotor casing.
Skip Nav Destination
Article navigation
January 2019
Research-Article
Engine-Scalable Rotor Casing Convective Heat Flux Evaluation Using Inverse Heat Transfer Methods
David Gonzalez Cuadrado,
David Gonzalez Cuadrado
School of Mechanical Engineering,
Purdue University,
500 Allison Road,
West Lafayette, IN 47906
e-mails: david.gonzalez.cuadrado@gmail.com;
dgcuadrado@purdue.edu
Purdue University,
500 Allison Road,
West Lafayette, IN 47906
e-mails: david.gonzalez.cuadrado@gmail.com;
dgcuadrado@purdue.edu
Search for other works by this author on:
Francisco Lozano,
Francisco Lozano
School of Mechanical Engineering,
Purdue University,
500 Allison Road,
West Lafayette, IN 47906
e-mail: flozanov@purdue.edu
Purdue University,
500 Allison Road,
West Lafayette, IN 47906
e-mail: flozanov@purdue.edu
Search for other works by this author on:
Valeria Andreoli,
Valeria Andreoli
School of Mechanical Engineering,
Purdue University,
500 Allison Road,
West Lafayette, IN 47906
e-mail: vale.andreoli@gmail.com
Purdue University,
500 Allison Road,
West Lafayette, IN 47906
e-mail: vale.andreoli@gmail.com
Search for other works by this author on:
Guillermo Paniagua
Guillermo Paniagua
School of Mechanical Engineering,
Purdue University,
500 Allison Road,
West Lafayette, IN 47906
e-mail: gpaniagua@me.com
Purdue University,
500 Allison Road,
West Lafayette, IN 47906
e-mail: gpaniagua@me.com
Search for other works by this author on:
David Gonzalez Cuadrado
School of Mechanical Engineering,
Purdue University,
500 Allison Road,
West Lafayette, IN 47906
e-mails: david.gonzalez.cuadrado@gmail.com;
dgcuadrado@purdue.edu
Purdue University,
500 Allison Road,
West Lafayette, IN 47906
e-mails: david.gonzalez.cuadrado@gmail.com;
dgcuadrado@purdue.edu
Francisco Lozano
School of Mechanical Engineering,
Purdue University,
500 Allison Road,
West Lafayette, IN 47906
e-mail: flozanov@purdue.edu
Purdue University,
500 Allison Road,
West Lafayette, IN 47906
e-mail: flozanov@purdue.edu
Valeria Andreoli
School of Mechanical Engineering,
Purdue University,
500 Allison Road,
West Lafayette, IN 47906
e-mail: vale.andreoli@gmail.com
Purdue University,
500 Allison Road,
West Lafayette, IN 47906
e-mail: vale.andreoli@gmail.com
Guillermo Paniagua
School of Mechanical Engineering,
Purdue University,
500 Allison Road,
West Lafayette, IN 47906
e-mail: gpaniagua@me.com
Purdue University,
500 Allison Road,
West Lafayette, IN 47906
e-mail: gpaniagua@me.com
Manuscript received June 23, 2018; final manuscript received June 27, 2018; published online September 14, 2018. Editor: Jerzy T. Sawicki.
J. Eng. Gas Turbines Power. Jan 2019, 141(1): 011012 (10 pages)
Published Online: September 14, 2018
Article history
Received:
June 23, 2018
Revised:
June 27, 2018
Citation
Gonzalez Cuadrado, D., Lozano, F., Andreoli, V., and Paniagua, G. (September 14, 2018). "Engine-Scalable Rotor Casing Convective Heat Flux Evaluation Using Inverse Heat Transfer Methods." ASME. J. Eng. Gas Turbines Power. January 2019; 141(1): 011012. https://doi.org/10.1115/1.4040713
Download citation file:
Get Email Alerts
Cited By
Characterization of Knocking Pressure Data From Two Closely Spaced Transducers: Effect of Transducer Mounting
J. Eng. Gas Turbines Power (September 2025)
Comparison of a Full-Scale and a 1:10 Scale Low-Speed Two-Stroke Marine Engine Using Computational Fluid Dynamics
J. Eng. Gas Turbines Power (September 2025)
An Adjustable Elastic Support Structure for Vibration Suppression of Rotating Machinery
J. Eng. Gas Turbines Power (September 2025)
Related Articles
Aerodynamics and Heat Transfer for a Cooled One and One-Half Stage High-Pressure Turbine—Part I: Vane Inlet Temperature Profile Generation and Migration
J. Turbomach (January,2012)
A New Experimental Facility to Investigate Combustor–Turbine Interactions in Gas Turbines With Multiple Can Combustors
J. Eng. Gas Turbines Power (May,2015)
Integrated Approach for Steam Turbine Thermostructural Analysis and Lifetime Prediction at Transient Operations
J. Eng. Gas Turbines Power (February,2018)
Related Proceedings Papers
Related Chapters
Outlook
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Completing the Picture
Air Engines: The History, Science, and Reality of the Perfect Engine
Compressive Deformation of Hot-Applied Rubberized Asphalt Waterproofing
Roofing Research and Standards Development: 10th Volume