This paper discusses the impact of inlet flow distortions on centrifugal compressors based upon a large experimental data base in which the performance of several impellers in a range of corrected flows and corrected speeds have been measured after been coupled with different inlet plenums technologies. The analysis extends to centrifugal compressor inlets including a side stream, typical of liquefied natural gas applications. The detailed measurements allow a thorough characterization of the flow field and associated performance. The results suggest that distortions can alter the head by as much as 3% and efficiency of around 1%. A theoretical analysis allowed to identify the design features that are responsible for this deviation. In particular, an extension of the so-called “reduced-frequency,” a coefficient routinely used in axial compressors and turbine aerodynamics to weigh the unsteadiness generated by upstream to downstream blade rows, allowed to determine a plenum-to-impeller reduced frequency that correlates very well with the measured performance. The theory behind the new coefficient is discussed together with the measurement details and validates the correlation that can be used in the design phase to determine the best compromise between the inlet plenum complexity and impact on the first stage.

References

1.
Ariga
,
I.
,
Kasai
,
N.
,
masuda
,
S.
,
Watanabe
,
Y.
, and
Watanabe
,
I.
,
1983
, “
The Effect of Inlet Distortion on the Performance Characteristics of a Centrifugal Compressor
,”
ASME J. Eng. Power
,
105
(
2
), pp.
223
230
.
2.
Stenning
,
A. H.
,
1980
, “
Inlet Distortion Effects in Axial Compressors
,”
ASME J. Fluids Eng.
,
102
(
1
), pp.
7
13
.
3.
Longley
,
J. P.
, and
Greitzer
,
E. M.
,
1992
, “
Inlet Distortion Effects in Aircraft Propulsion System Integration
,” National Aeronautics and Space Administration, Washington, DC, Report No.
AGARD-LS-183
.https://ntrs.nasa.gov/search.jsp?R=19920019221
4.
Greitzer
,
E. M.
,
Epstein
,
A. H.
,
Guenette
,
G. R.
,
Gysling
,
D. L.
,
Haynes
,
J.
,
Hendricks
,
G. J.
,
Paduano
,
J.
,
Simon
,
J. S.
, and
Valavani
,
L.
,
1992
, “
Dynamic Control of Aerodynamic Instabilities in Gas Turbine Engines
,” National Aeronautics and Space Administration, Washington, DC, Report No.
AGARD-LS-183
.https://ntrs.nasa.gov/search.jsp?R=19920019223
5.
Shen
,
F.
,
Yu
,
L.
,
Cousins
,
W. T.
,
Sishtla
,
V.
, and
Sharma
,
O. P.
,
2016
, “
Numerical Investigation of the Flow Distortion Impact on a Refrigeration Centrifugal Compressor
,”
ASME
Paper No. GT2016-57063.
6.
Michelassi
,
V.
, and
Giachi
,
M.
,
1997
, “
Experimental and Numerical Analysis of Compressor Inlet Volutes
,”
ASME
Paper No. 97-GT-481.
7.
Kim
,
Y.
,
Engeda
,
A.
,
Aungier
,
R.
, and
Direnzi
,
G.
,
2001
, “
The Influence of Inlet Flow Distortion on the Performance of a Centrifugal Compressor and the Development of an Improved Inlet Using Numerical Simulations
,”
Proc. Inst. Mech. Eng., Part A
,
215
(
3
), pp.
323
338
.
8.
Xin
,
J.
,
Wang
,
X.
,
Zhou
,
L.
,
Ye
,
Z.
, and
Liu
,
H.
,
2016
, “
Numerical Investigation of the Flow Field and Aerodynamic Load on Impellers in Centrifugal Compressors With Different Radial Inlets
,”
ASME
Paper No. GT2016–57180.
9.
Medic
,
G.
,
Sharma
,
O. P.
,
Jongwook
,
J.
,
Hardin
,
L. W.
,
McCormick
,
D. C.
,
Cousins
,
W. T.
,
Laurie
,
E. A.
,
Shabbir
,
A.
,
Holley
,
B. M.
, and
Van Slooten
,
P. R.
,
2017
, “
High Efficiency Centrifugal Compressor for Rotorcraft Applications
,” NASA Glenn Research Center, Cleveland, OH, Report No.
NASA/CR-2014-218114
.https://ntrs.nasa.gov/search.jsp?R=20180001472
10.
Pazzi
,
S.
, and
Michelassi
,
V.
,
2000
, “
Analysis and Design Outlines of Centrifugal Compressor Inlet Volutes
,”
ASME
Paper No. 2000-GT-0464.
11.
Toni
,
L.
,
Ballarini
,
V.
,
Cioncolini
,
S.
,
Persico
,
G.
, and
Gaetani
,
P.
,
2010
, “
Unsteady Flow Field Measurements in an Industrial Centrifugal Compressor
,”
39th Turbomachinery Symposium
, Houston, TX, Oct. 4–7, pp.
49
58
.https://pdfs.semanticscholar.org/1f92/34c5ea0c36861a9365632e546eff95ee0559.pdf
12.
Satish
,
V. V. N. K.
,
Guidotti
,
E.
,
Rubino
,
D. T.
,
Tapinassi
,
L.
, and
Prasad
,
S.
,
2013
, “
Accuracy of Centrifugal Compressor Stages Performance Prediction by Means of High Fidelity CFD and Validation Using Advanced Aerodynamic Probe
,”
ASME
Paper No. GT2013-95618.
13.
Tapinassi
,
L.
,
Fiaschi
,
D.
, and
Manfrida
,
G.
,
2006
, “
Improving the Accuracy of Tests for Centrifugal Compressors Stages Performance Prediction
,”
ASME
Paper No. ESDA2006-95070.
14.
Ferrara
,
G.
,
Ferrari
,
L.
, and
Baldassarre
,
R.
,
2006
, “
Experimental Characterization of Vaneless Diffuser Rotating Stall—Part V: Influence of Diffuser Geometry on Stall Inception and Performance (3rd Impeller Tested)
,”
ASME
Paper No. GT2006-90693.
15.
Michelassi
,
V.
,
Chen
,
L.
,
Pichler
,
R.
,
Sandberg
,
R.
, and
Bhaskarna
,
R.
,
2016
, “
High-Fidelity Simulations of Low-Pressure Turbines: Effect of Flow Coefficient and Reduced Frequency on Losses
,”
ASME J. Turbomach.
,
138
(
11
), p.
111006
.
16.
Leggett
,
J.
,
Priebe
,
S.
,
Shabbir
,
A.
,
Sandberg
,
R.
,
Richardson
,
E.
, and
Michelassi
,
V.
,
2017
, “
LES Loss Prediction in an Axial Compressor Cascade at Off-Design Incidences With Free Stream Disturbances
,”
ASME
Paper No. GT2017-64292.
17.
Cumpsty
,
N. A.
,
1989
, “
Compressor Aerodynamics
,” Longman, Harlow, UK.
18.
Gong
,
X.
, and
Chen
,
R.
,
2014
, “
Total Pressure Loss Mechanism of Centrifugal Compressors
,”
J. Mech. Eng. Res.
,
4
(
2
), pp.
45
59
.
You do not currently have access to this content.