Pressure gain combustion (PGC) has been conceived to convert fuel's chemical energy into thermal energy and mechanical energy, thereby reducing the entropy production in the process. Recent research has shown that the rotating detonation combustor (RDC) can provide excellent specific thrust, specific impulse, and pressure gain within a small volume through rapid energy release by continuous detonation in the circumferential direction. The RDC as a PGC system for power generating gas turbines in combined cycle power plants could provide significant efficiency gains. However, few past studies have employed fuels that are relevant to power generation turbines, since RDC research has focused mainly on propulsion applications. In this study, we present experimental results from RDC operated on methane and oxygen-enriched air to represent reactants used in land-based power generation. The RDC is operated at a high pressure by placing a back-pressure plate downstream of the annular combustor. Past studies have focused mainly on probe measurements inside the combustor, and thus, little information is known about the nature of the products exiting the RDC. In particular, it is unknown if chemical reactions persist outside the RDC annulus, especially if methane is used as the fuel. In this study, we apply two time-resolved optical techniques to simultaneously image the RDC products at framing rate of 30 kHz: (1) direct visual-imaging to identify the overall size and extent of the plume, and (2) OH* chemiluminescence imaging to detect the reaction zones if any. Results show dynamic features of the combustion products that are consistent with the probe measurements inside the rotating detonation engine (RDE). Moreover, presence of OH* in the products suggests that the oblique shock wave and reactions persist downstream of the detonation zone in the RDC.

References

1.
U.S. Energy Information Administration
, 2017, “
Short-Term Energy Outlook
,” EIA, Washington, DC, Sept. 12, 2017, https://www.eia.gov/outlooks/steo/report/electricity.cfm
2.
GE Power
, 2017, “
Breaking the Power Plant Efficiency Record
,” GE Energy Infrastructure, Atlanta, GA, accessed June 17, 2017, https://www.ge.com/power/about/insights/articles/2016/04/power-plant-efficiency-record
3.
Turns
,
S. R.
,
2012
,
An Introduction to Combustion: Concepts and Applications
,
McGraw-Hill
, New York, p.
630
.
4.
Sousa
,
J.
,
Paniagua
,
G.
, and
Morata
,
E. C.
,
2017
, “
Thermodynamic Analysis of a Gas Turbine Engine With a Rotating Detonation Combustor
,”
Appl. Energy
,
195
, pp.
247
256
.
5.
Paxson
,
D.
, and
Dougherty
,
K.
,
2008
, “
Operability of an Ejector Enhanced Pulse Combustor in a Gas Turbine Environment
,”
AIAA
Paper No. AIAA 2008-119
.
6.
Akbari
,
P.
, and
Nalim
,
M. R.
,
2009
, “
Review of Recent Developments in Wave Rotor Combustion Technology
,”
J. Propul. Power
,
25
(
4
), pp. 833–844.
7.
Kailasanath
,
K.
,
2003
, “
Recent Developments in the Research on Pulse Detonation Engines
,”
AIAA J.
,
41
(
2
), p.
145
.
8.
Barr
,
L.
,
2008
,
Pulse Detonation Engine Flies Into History
,
Air Force Material Command
, Air Force Base, OH.
9.
Roy
,
G. D.
,
Frolov
,
S. M.
,
Borisov
,
A. A.
, and
Netzer
,
D. W.
,
2004
, “
Pulse Detonation Propulsion: Challenges, Current Status, and Future Perspective
,”
Prog. Energy Combust. Sci.
,
30
(
6
), pp.
545
672
.
10.
Nicholls
,
J. A.
, and
Cullen
,
R. E.
,
1964
, “
The Feasibility of a Rotating Detonation Wave Rocket Motor
,” University of Michigan, Ann Arbor, MI, Report No. TR-RPL-TDR- 64-113.
11.
Voitsekhovskii
,
B. V.
,
1960
, “
Stationary Spin Detonation
,”
Sov. J. Appl. Mech. Tech. Phys.
,
3
, pp.
157
164
.
12.
Lu
,
F. K.
, and
Braun
,
E. M.
,
2014
, “
Rotating Detonation Wave Propulsion: Experimental Challenges, Modeling, and Engine Concepts
,”
J. Propul. Power
,
30
(
5
), pp.
1125
1142
.
13.
Wolanski
,
P.
,
2013
, “
Detonative Propulsion
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
125
158
.
14.
Bykovski
,
F. A.
, and
Zhdan
,
S. A.
,
2015
, “
Current Status of Research of Continuous Detonation in Fuel–Air Mixtures (Review)
,”
Combust. Explos. Shock Waves
,
51
(
1
), pp.
21
35
.
15.
Kailasanath
,
K.
, “
Recent Developments in the Research on Rotating-Detonation-Wave Engines
,”
AIAA
Paper No. AIAA 2017-0784
.
16.
Roy
,
A.
,
Ferguson
,
D.
,
Sidwell
,
T.
,
O'Meara
,
B.
,
Strakey
,
P.
,
Bedick
,
C.
, and
Sisler
,
A.
, “
Experimental Study of Rotating Detonation Combustor Performance Under Preheat and Back Pressure Operation
,”
AIAA
Paper No. AIAA 2017-1065
.
17.
Pandiya
,
N.
,
St. George
,
A.
,
Driscoll
,
R.
,
Anand
,
V.
,
Malla
,
B.
, and
Gutmark
,
E. J.
, 4-8 January
2017
, “
Efficacy of Acoustics in Determining the Operating Mode of a Rotating Detonation Engine
,”
AIAA
Paper No. AIAA 2016-1649
.
18.
Kasahara
,
J.
, and
Frolov
,
S.
,
2015
, “
Present Status of Pulse and Rotating Detonation Engine Research
,”
25th International Colloquium on the Dynamics of Explosions and Reactive Systems
(
ICDERS
), Leeds, UK, Aug. 2–7, pp. 1–6.http://www.icders.org/ICDERS2015/abstracts/ICDERS2015-304.pdf
19.
Stechmann
,
D.
,
Lim
,
D.
, and
Heister
,
S. D.
,
2014
, “
Survey of Rotating Detonation Wave Combustor Technology and Potential Rocket Vehicle Applications
,”
AIAA
Paper No. AIAA 2014-3902
.
20.
Rankin
,
B. A.
,
Fotia
,
M. L.
,
Naples
,
A. G.
,
Stevens
,
C. A.
,
Hoke
,
J. L.
,
Kaemming
,
T. A.
,
Theuerkauf
,
S. W.
, and
Schauer
,
F. R.
,
2017
, “
Overview of Performance, Application, and Analysis of Rotating Detonation Engine Technologies
,”
J. Propul. Power
,
33
(
1
), pp.
131
143
.
21.
Cho
,
K. Y.
,
Codoni
,
J. R.
,
Rankin
,
B. A.
,
Hoke
,
J. L.
, and
Schauer
,
F. R.
, 4-8 January
2017
, “
High-Repetition-Rate Chemiluminescence Imaging of a Rotating Detonation Engine
,”
AIAA
Paper No. AIAA 2016-1648
.
22.
Anand
,
V.
,
George
,
A. S.
,
Driscoll
,
R.
, and
Gutmark
,
E.
,
2016
, “
Investigation of Rotating Detonation Combustor Operation With H2-Air Mixtures
,”
Int. J. Hydrogen Energy
,
41
(
2
), pp.
1281
1292
.
23.
Fotia
,
M. L.
,
Schauer
,
F. R.
,
Kaemming
,
T.
, and
Hoke
,
J. L.
,
2015
, “
Study of the Experimental Performance of a Rotating Detonation Engine With Nozzled Exhaust Flow
,”
AIAA
Paper No. AIAA 2015-0631
.
24.
Rankin
,
B. A.
,
Hoke
,
J. L.
, and
Schauer
,
F. R.
,
2014
, “
Periodic Exhaust Flow Through a Converging-Diverging Nozzle Downstream of a Rotating Detonation Engine
,”
AIAA
Paper No. AIAA 2014-1015
.
25.
Naples
,
A. G.
,
Hoke
,
J. L.
, and
Schauer
,
F. R.
,
2014
, “
Rotating Detonation Engine Interaction With an Annular Ejector
,”
AIAA
Paper No. AIAA 2014-0287
.
26.
Fotia
,
M. L.
,
Hoke
,
J. L.
, and
Schauer
,
F. R.
,
2015
, “
Experimental Ignition Characteristics of a Rotating Detonation Engine Under Backpressured Conditions
,”
AIAA
Paper No. AIAA 2015-0632
.
27.
Welsh
,
D. J.
,
King
,
P. I.
,
DeBarmore
,
N. D.
,
Schauer
,
F. R.
, and
Hoke
,
J. L.
,
2014
, “
RDE Integration With T63 Turboshaft Engine Components
,”
AIAA
Paper No. AIAA 2014-1316
.
28.
Wang
,
C.
,
Liu
,
W.
,
Liu
,
S.
,
Jiang
,
L.
, and
Lin
,
Z.
,
2015
, “
Propagation Characteristics of Continuous Rotating Detonation Wave Under Different Temperature Air
,”
25th International Colloquium on the Dynamics of Explosions and Reactive Systems
(
ICDERS
), Leeds, UK, Aug 2–7, pp. 1–6.http://www.icders.org/ICDERS2015/abstracts/ICDERS2015-154.pdf
29.
Naples
,
A.
,
Hoke
,
J.
,
Karnesky
,
J.
, and
Schauer
,
F.
,
2013
, “
Flowfield Characterization of a Rotating Detonation Engine
,”
AIAA
Paper No. AIAA 2013-0278
.
30.
Welch
,
C.
,
Depperschmidt
,
D.
,
Miller
,
R.
,
Tobias
,
J.
,
Uddi
,
M.
, and
Agrawal
,
A. K.
,
2018
, “
Experimental Analysis of Wave Propagation in Methane-Fueled Rotating Detonation Combustor
,”
ASME
Paper No. GT2018-77258
.
You do not currently have access to this content.