Abstract

Hydrodynamic instability in lean premixed gas turbine combustors can cause coherent flow velocity oscillations. These can in turn drive heat release oscillations that when favorably coupled with combustor acoustic modes can result in combustion instability. The aim of this paper is to understand the impact of fuel staging on the characteristics of hydrodynamic modes in multinozzle combustors. We extend our recent numerical study on the hydrodynamic stability characteristics of a multinozzle combustor having three nozzles in a straight line with uniform fuel–air ratio in each nozzle, to the nonuniform fuel–air ratio case. As before, we construct the base flow model for this study by superposing contributions from individual nozzles, determined using a base flow model for a nominally axisymmetric single nozzle, at every point in the computational domain. The impact of fuel staging is captured by changing the burnt to unburnt gas density ratio parameter in the individual contribution from each nozzle. We investigate the characteristics of the most locally absolutely unstable mode for two cases. The first one is when the middle nozzle is made fuel rich when compared to the side nozzles and the second is when the side nozzles are made fuel rich relative to the middle nozzle. The impact of nonuniform fuel/air ratio on the local absolutely unstable temporal eigenvalues is seen to be small. However, significant changes in the spatial structure of the flow oscillations associated with the hydrodynamic eigenmodes are observed. In the first case, the flow oscillations with a different locally azimuthal nature on the middle nozzle when compared to the side nozzles emerge as the middle nozzle is made richer. In the second case, the oscillations on the two side nozzles are suppressed leaving the middle nozzle in a state that closely matches that of a single unconfined nozzle with the same nominal base flow velocity field. These types of internozzle variations in flow oscillation characteristics can explain the emergence of nonuniformity in heat release oscillation characteristics between individual nozzles in multinozzle combustors.

References

1.
Lieuwen
,
T. C.
, and
Yang
,
V.
,
2005
,
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling
,
American Institute of Aeronautics and Astronautics
,
Reston, VA
.
2.
Lieuwen
,
T. C.
,
2012
,
Unsteady Combustor Physics
,
Cambridge University Press
,
Cambridge, UK
.
3.
Hemchandra
,
S.
,
Shanbhogue
,
S.
,
Hong
,
S.
, and
Ghoniem
,
A. F.
,
2018
, “
Role of Hydrodynamic Shear Layer Stability in Driving Combustion Instability in a Premixed Propane-Air Backward-Facing Step Combustor
,”
Phys. Rev. Fluids
,
3
(
6
), p.
063201
.10.1103/PhysRevFluids.3.063201
4.
Lefebvre
,
A. H.
,
1998
,
Gas Turbine Combustion
,
CRC Press
,
Boca Raton, FL
.
5.
Leibovich
,
S.
,
1978
, “
The Structure of Vortex Breakdown
,”
Annu. Rev. Fluid Mech.
,
10
(
1
), pp.
221
246
.10.1146/annurev.fl.10.010178.001253
6.
Hall
,
M. G.
,
1972
, “
Vortex Breakdown
,”
Annu. Rev. Fluid Mech.
,
4
(
1
), pp.
195
218
.10.1146/annurev.fl.04.010172.001211
7.
Escudier
,
M.
,
1988
, “
Vortex Breakdown: Observations and Explanations
,”
Prog. Aerosp. Sci.
,
25
(
2
), pp.
189
229
.10.1016/0376-0421(88)90007-3
8.
Manoharan
,
K.
,
Hansford
,
S.
,
O'Connor
,
J.
, and
Hemchandra
,
S.
,
2015
, “
Instability Mechanism in a Swirl Flow Combustor: Precession of Vortex Core and Influence of Density Gradient
,”
ASME Paper No. GT2015-42985
.10.1115/GT2015-42985
9.
O'Connor
,
J.
,
2011
, “
Response of a Swirl-Stabilized Flame to Transverse Acoustic Excitation
,” Ph.D. thesis,
Georgia Institute of Technology
,
Georgia
.
10.
Tammisola
,
O.
, and
Juniper
,
M. P.
,
2016
, “
Coherent Structures in a Swirl Injector at Re = 4800 by Nonlinear Simulations and Linear Global Modes
,”
J. Fluid Mech.
,
792
, pp.
620
657
.10.1017/jfm.2016.86
11.
Oberleithner
,
K.
,
Sieber
,
M.
,
Nayeri
,
C. N.
,
Paschereit
,
C. O.
,
Petz
,
C.
,
Hege
,
H. C.
,
Noack
,
B. R.
, and
Wygnanski
,
I.
,
2011
, “
Three-Dimensional Coherent Structures in a Swirling Jet Undergoing Vortex Breakdown: Stability Analysis and Empirical Mode Construction
,”
J. Fluid Mech.
,
679
, pp.
383
414
.10.1017/jfm.2011.141
12.
Oberleithner
,
K.
,
Stöhr
,
M.
,
Im
,
S. H.
,
Arndt
,
C. M.
, and
Steinberg
,
A. M.
,
2015
, “
Formation and Flame-Induced Suppression of the Precessing Vortex Core in a Swirl Combustor: Experiments and Linear Stability Analysis
,”
Combust. Flame
,
162
(
8
), pp.
3100
3114
.10.1016/j.combustflame.2015.02.015
13.
Frederick
,
M.
,
Manoharan
,
K.
,
Dudash
,
J.
,
Brubaker
,
B.
,
Hemchandra
,
S.
, and
O'Connor
,
J.
,
2018
, “
Impact of Precessing Vortex Core Dynamics on Shear Layer Response in a Swirling Jet
,”
ASME J. Eng. Gas Turbines Power
,
140
(
6
), p.
061503
.10.1115/1.4038324
14.
Yu
,
M. H.
, and
Monkewitz
,
P. A.
,
1990
, “
The Effect of Nonuniform Density on the Absolute Instability of Two-Dimensional Inertial Jets and Wakes
,”
Phys. Fluids A
,
2
(
7
), pp.
1175
1181
.10.1063/1.857618
15.
Kunnumpuram
,
J. S.
,
Emerson
,
B.
, and
Lieuwen
,
T. C.
,
2016
, “
Spatio-Temporal Linear Stability Analysis of Multiple Reacting Wakes
,” APS Meeting Abstracts.
16.
Subramanian
,
H. G.
,
Manoharan
,
K.
, and
Hemchandra
,
S.
,
2019
, “
Influence of Nonaxisymmetric Confinement on the Hydrodynamic Stability of Multinozzle Swirl Flows
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
021016
.10.1115/1.4041080
17.
Smith
,
T.
,
Emerson
,
B.
,
Chterev
,
I.
,
Noble
,
D. R.
, and
Lieuwen
,
T. C.
,
2016
, “
Flow Dynamics in Single and Multi-Nozzle Swirl Flames
,”
ASME Paper No. GT2016-57755
.10.1115/GT2016-57755
18.
Smith
,
T. E.
,
Douglas
,
C. M.
,
Emerson
,
B. L.
, and
Lieuwen
,
T. C.
,
2018
, “
Axial Evolution of Forced Helical Flame and Flow Disturbances
,”
J. Fluid Mech.
,
844
, pp.
323
356
.10.1017/jfm.2018.151
19.
Manoharan
,
K.
, and
Hemachandra
,
S.
,
2014
, “
Absolute/Convective Instability Transition in a Backward Facing Step Combustor: Fundamental Mechanism and Influence of Density Gradient
,”
ASME J. Eng. Gas Turbines Power
,
137
(
2
), p.
021501
.10.1115/1.4028206
20.
Chomaz
,
J.-M.
,
Huerre
,
P.
, and
Redekopp
,
L. G.
,
1991
, “
A Frequency Selection Criterion in Spatially Developing Flows
,”
Stud. Appl. Math
,
84
(
2
), pp.
119
144
.10.1002/sapm1991842119
21.
Monkewitz
,
P. A.
,
Huerre
,
P.
, and
Chomaz
,
J.-M.
,
1993
, “
Global Linear Stability Analysis of Weakly Non-Parallel Shear Flows
,”
J. Fluid Mech.
,
251
, pp.
1
20
.10.1017/S0022112093003313
22.
Huerre
,
P.
, and
Monkewitz
,
P. A.
,
1990
, “
Local and Global Instabilities in Spatially Developing Flows
,”
Annu. Rev. Fluid Mech.
,
22
(
1
), pp.
473
537
.10.1146/annurev.fl.22.010190.002353
23.
Gallaire
,
F.
, and
Chomaz
,
J. M.
,
2003
, “
Instability Mechanisms in Swirling Flows
,”
Phys. Fluids
,
15
(
9
), pp.
2622
2639
.10.1063/1.1589011
24.
Douglas
,
C. M.
,
Smith
,
T.
,
Emerson
,
B. L.
,
Manoharan
,
K.
,
Hemchandra
,
S.
, and
Lieuwen
,
T. C.
,
2018
, “
Hydrodynamic Receptivity Predictions and Measurements of an Acoustically Forced Multi-Nozzle Swirl Combustor
,”
AIAA
Paper No. 2018–0587.10.2514/6.2018-0587
25.
Hansford
,
S.
,
O'Connor
,
J.
,
Manoharan
,
K.
, and
Hemchandra
,
S.
,
2015
, “
Impact of Flow Non-Axisymmetry on Swirling Flow Dynamics and Receptivity to Acoustics
,”
ASME Paper No. GT2015-43377
.10.1115/GT2015-43377
26.
Manoharan
,
K.
,
Smith
,
T.
,
Emerson
,
B.
,
Douglas
,
C. M.
,
Lieuwen
,
T. C.
, and
Hemchandra
,
S.
,
2017
, “
Velocity Field Response of a Forced Swirl Stabilized Premixed Flame
,”
ASME Paper No. GT2017-63936
.10.1115/GT2017-63936
27.
Qadri
,
U. A.
,
Mistry
,
D.
, and
Juniper
,
M.
,
2013
, “
Structural Sensitivity of Spiral Vortex Breakdown
,”
J. Fluid Mech.
,
720
, pp.
558
581
.10.1017/jfm.2013.34
28.
Gaster
,
M.
,
1968
, “
Growth of Disturbances in Both Space and Time
,”
Phys. Fluids
,
11
(
4
), pp.
723
727
.10.1063/1.1691990
29.
Huerre
,
P.
, and
Monkewitz
,
P. A.
,
1985
, “
Absolute and Convective Instabilities in Free Shear Layers
,”
J. Fluid Mech.
,
159
(
1
), pp.
151
168
.10.1017/S0022112085003147
30.
Huerre
,
P.
, and
Rossi
,
M.
,
2005
, “
Hydrodynamic Instabilities in Open Flows
,”
Hydrodynamics and Nonlinear Instabilities
,
P.
Manneville
, and
C.
Godrèche
, eds.,
Cambridge University Press
, Cambridge, United Kingdom, pp.
81
288
.
31.
Juniper
,
M. P.
, and
Pier
,
B.
,
2015
, “
The Structural Sensitivity of Open Shear Flows Calculated With a Local Stability Analysis
,”
Eur. J. Mech. B
,
49
, pp.
426
437
.10.1016/j.euromechflu.2014.05.011
32.
Juniper
,
M. P.
,
Tammisola
,
O.
, and
Lundell
,
F.
,
2011
, “
The Local and Global Stability of Confined Planar Wakes at Intermediate Reynolds Number
,”
J. Fluid Mech.
,
686
, pp.
218
238
.10.1017/jfm.2011.324
33.
Emerson
,
B.
,
O'Connor
,
J.
,
Juniper
,
M.
, and
Lieuwen
,
T. C.
,
2012
, “
Density Ratio Effects on Reacting Bluff-Body Flow Field Characteristics
,”
J. Fluid Mech.
,
706
, pp.
219
250
.10.1017/jfm.2012.248
34.
Bayliss
,
A.
, and
Turkel
,
E.
,
1992
, “
Mappings and Accuracy for Chebyshev Pseudo-Spectral Approximations
,”
J. Comput. Phys.
,
101
(
2
), pp.
349
359
.10.1016/0021-9991(92)90012-N
35.
Boyd
,
J. P.
,
2000
,
Chebyshev and Fourier Spectral Methods
,
DOVER Publications
,
New York
.
36.
Deissler
,
R. J.
,
1987
, “
The Convective Nature of Instability in Plane Poiseuille Flow
,”
Phys. Fluids
,
30
(
8
), pp.
2303
2305
.10.1063/1.866118
37.
Acharya
,
V.
, and
Lieuwen
,
T.
,
2014
, “
Response of Non-Axisymmetric Premixed, Swirl Flames to Helical Disturbances
,”
ASME Paper No. GT2014-27059
.10.1115/GT2014-27059
38.
Samarasinghe
,
J.
,
Peluso
,
S. J.
,
Quay
,
B. D.
, and
Santavicca
,
D. A.
,
2016
, “
The Three-Dimensional Structure of Swirl-Stabilized Flames in a Lean Premixed Multinozzle Can Combustor
,”
ASME J. Eng. Gas Turbines Power
,
138
(
3
), p.
031502
.10.1115/1.4031439
39.
Samarasinghe
,
J.
,
Culler
,
W.
,
Quay
,
B. D.
,
Santavicca
,
D. A.
, and
O'Connor
,
J.
,
2017
, “
The Effect of Fuel Staging on the Structure and Instability Characteristics of Swirl-Stabilized Flames in a Lean Premixed Multinozzle Can Combustor
,”
ASME J. Eng. Gas Turbines Power
,
139
(
12
), p.
121504
.10.1115/1.4037461
You do not currently have access to this content.