Abstract

Recent work by the authors and others has uncovered the need for further chemical kinetic-related modeling and experiments, specifically for NOx kinetics at engine conditions. In particular, data on CH formation at realistic combustion conditions are needed for further refinement of the prompt-NOx kinetics. To this end, a series of shock-tube experiments to obtain CH concentration time histories at elevated temperatures was performed behind reflected shock waves at the Aerospace Corporation using a tunable laser. This Ti-Sapphire laser was operated in the near infrared at about 854 nm; blue light at 426.9 nm was obtained using an external, frequency-doubling crystal. The resulting light was used in a differential absorption setup with common-mode rejection to measure CH time histories. New measurements in CH4–C2H6–O2 mixtures highly diluted in argon were performed at temperatures between 1890 K and 2719 K. These new data are compared to several modern, detailed chemical kinetics mechanisms with updated NOx submechanisms. Sensitivity and rate of production analyses at the shock-tube conditions along with a gas turbine model are used to elucidate the current state of affairs in CH prediction by the literature models and its effect on NOx production, particularly through the prompt mechanism. A brief discussion of the chemical kinetics for an important reaction in the production of CH is also presented to emphasize the need for further study and refinement of reactions leading to CH production.

References

1.
Fenimore
,
C. P.
,
1971
, “
Formation of Nitric Oxide in Premixed Hydrocarbon Flames
,”
Symp. (Int.) Combust.
,
13
(
1
), pp.
373
380
.10.1016/S0082-0784(71)80040-1
2.
Miller
,
J. A.
, and
Bowman
,
C. T.
,
1989
, “
Mechanism and Modeling of Nitrogen Chemistry in Combustion
,”
Process Energy Combust. Sci.
,
15
(
4
), pp.
287
338
.10.1016/0360-1285(89)90017-8
3.
Moskaleva
,
L. V.
, and
Lin
,
M. C.
,
2000
, “
The Spin-Conserved CH+N2→H+NCN: A Major Pathway to Prompt NO Studied by Quantum/Statistical Theory Calculations and Kinetic Modeling of Rate Constant
,”
Proc. Comb. Inst.
,
28
(
2
), pp.
2393
2401
.10.1016/S0082-0784(00)80652-9
4.
Petersen
,
E. L.
,
Rickard
,
M. J. A.
,
Crofton
,
M. W.
,
Abbey
,
E. D.
,
Traum
,
M. J.
, and
Kalitan
,
D. M.
,
2005
, “
A Facility for Gas- and Condensed-Phase Measurement Behind Shock Waves
,”
Meas. Sci. Technol.
,
16
(
9
), pp.
1716
1729
.10.1088/0957-0233/16/9/003
5.
Mulvihill
,
C. R.
,
Crofton
,
M. W.
,
Arnold
,
D. G.
,
Petersen
,
E. L.
, and
Lam
,
K. Y.
,
2019
, “
A Laser Diagnostic at 427 nm for Quantitative Measurement of CH in a Shock Tube
,”
Appl. Phys. B
,
125
(
5
), p. 78. 10.1007/s00340-019-7188-x
6.
Dean
,
A. J.
, and
Hanson
,
R. K.
,
1989
, “
Development of a Laser Absorption Diagnostic for Shock Tube Studies of CH
,”
J. Quant. Spectrosc. Radiat. Transfer
,
42
(
5
), pp.
375
384
.10.1016/0022-4073(89)90004-6
7.
Dean
,
A. J.
,
Hanson
,
R. K.
, and
Bowman
,
C. T.
,
1991
, “
High Temperature Shock Tube Study of Reactions of CH and C-Atoms With N2
,”
Symp. (Int.) Combust.
,
23
(
1
), pp.
259
265
.10.1016/S0082-0784(06)80268-7
8.
Vasudevan
,
V.
,
Hanson
,
R. K.
,
Golden
,
D. M.
,
Bowman
,
C. T.
, and
Davidson
,
D. F.
,
2007
, “
High-Temperature Shock Tube Measurements of Methyl Radical Decomposition
,”
J. Phys. Chem.
,
111
(
19
), pp.
4062
4072
.10.1021/jp0677187
9.
Vasudevan
,
V.
,
Hanson
,
R. K.
,
Golden
,
D. M.
,
Bowman
,
C. T.
, and
Davidson
,
D. F.
,
2007
, “
Shock Tube Study of the Reaction of CH With N2: Overall Rate and Branching Ratio
,”
J. Phys. Chem.
,
111
(
46
), pp.
11818
11830
.10.1021/jp075638c
10.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
,
Gardiner
,
W. C.
, Jr.
Lissianski
,
V. V.
, and
Qin
,
Z.
, 2019, “What's New in GRI-Mech 3.0,” accessed Aug. 20, 2019, http://combustion.berkeley.edu/gri-mech/version30/text30.html
11.
Ahmed
,
S. F.
,
Santner
,
J.
,
Dryer
,
F. L.
,
Padak
,
B.
, and
Farouk
,
T. I.
,
2016
, “
Computational Study of NOx Formation at Conditions Relevant to Gas Turbine Operation: Part 2—NOx in High Hydrogen Content Fuel Combustion at Elevated Pressure
,”
Energy Fuels
,
30
(
9
), pp.
7691
7703
.10.1021/acs.energyfuels.6b00421
12.
Glarborg
,
P.
,
Miller
,
J. A.
,
Ruscic
,
B.
, and
Klippenstein
,
S. J.
,
2018
, “
Modeling Nitrogen Chemistry in Combustion
,”
Prog. Energy Comb. Sci.
,
67
, pp.
31
68
.10.1016/j.pecs.2018.01.002
13.
Deng
,
F.
,
Zhang
,
Y.
,
Sun
,
W.
,
Huang
,
W.
,
Zhao
,
Q.
,
Qin
,
X.
,
Yang
,
F.
, and
Huang
,
Z.
,
2018
, “
Towards a Kinetic Understanding of the NOx Sensitization Effect on Unsaturation Hydrocarbons: A Case Study of Ethylene/Nitrogen Dioxide Mixtures
,”
Proc. Comb. Inst.
,
37
(
1
), pp.
719
726
.10.1016/j.proci.2018.07.115
14.
Chemkin Pro 18
,
2013
, “Chemkin Pro 18,”
Ansys
,
San Diego
.
15.
Richards
,
G. A.
,
McMillian
,
M. M.
,
Gemmen
,
R. S.
,
Rogers
,
W. A.
, and
Cully
,
S. R.
,
2001
, “
Issues for Low-Emission, Fuel-Flexible Power Systems
,”
Prog. Energy Combust. Sci.
,
27
(
2
), pp.
141
169
.10.1016/S0360-1285(00)00019-8
16.
Santner
,
J.
,
Ahmed
,
S. F.
,
Farouk
,
T.
, and
Dryer
,
F. L.
,
2016
, “
Computational Study of NOx Formation at Conditions Relevant to Gas Turbine Operation: Part 1
,”
Energy Fuels
,
30
(
8
), pp.
6745
6755
.10.1021/acs.energyfuels.6b00420
You do not currently have access to this content.