Abstract

This paper presents a detailed loss analysis of a centrifugal compressor stage with a vaned diffuser for application in a heavy-duty engine turbocharger. The analysis is carried out in order to investigate the loss distribution in the stage. To quantify the impact of different loss types and locations, a detailed validated steady-state three-dimensional (3D) computational fluid dynamics (CFD) solution is employed. The local entropy production rate is calculated for two operating points (full load and part load), which are most relevant to the real-world operation of the compressor in a truck application. Two methods are suggested as the procedure for the division of the whole fluid volume into subvolumes because this is key for the resulting loss distribution. The primary loss-generating mechanisms are shown at main operating conditions to reveal the regions of improvement. A detailed grid study was conducted to enable the calculation of the entropy ratio. It was possible to capture around 78% (partial load) and 70% (full load) of the entropy production with a mesh with circa 100 × 106 elements. Around half of the losses were due to the boundary layer friction, followed by losses associated with a boundary layer separation resulting from the back-flow at the shroud contour close to the impeller exit and back disk friction accounted for with 6–7% of the stage's losses.

References

1.
Wöhr
,
M.
,
2015
, “
Entwicklung Eines Variablen Turbolader-Verdichters Für Schwere Nutzfahrzeugmotoren
,” Ph.D. thesis, Technische Universität Dresden, Dresden, Germany.
2.
Ibaraki
,
S.
, and
Tomita
,
I.
,
2014
, “
Optimized Design and Flow Physics of a Wide Operating Range Centrifugal Compressor for Automotive Turbochargers
,”
11th International Conference on Turbochargers and Turbocharging
, London, May
13
14
.
3.
Wang
,
B.
,
Numakura
,
R.
, and
Tamaki
,
H.
,
2016
, “
Investigation of Performance and Flow Mechanism of a Non-Axisymmetric Casing Treatment in Centrifugal Compressor for Turbochargers
,”
12th International Conference on Turbochargers and Turbocharging
, London, May
17
18
.
4.
Chebli
,
E.
,
Müller
,
M.
,
Gruden
,
I.
,
Leweux
,
J.
, and
Gorbach
,
A.
,
2013
, “
Development of an Exhaust-Gas Turbocharger for a Heavy-Duty Commercial Vehicle Engine
,” MTZ Worldwide, Springer Automotive Media.
5.
Hunziker
,
R.
,
Dickmann
,
H.
, and
Emmrich
,
R.
,
2001
, “
Numerical and Experimental Investigation of a Centrifugal Compressor With an Inducer Casing Bleed System
,”
Proc. Inst. Mech. Eng., Part A
, 215(6), pp. 783–791.10.1243/0957650011538910
6.
Sivagnanasundaram
,
S.
,
Spence
,
S.
,
Early
,
J.
, and
Nikpour
,
B.
,
2010
, “
Investigation of Compressor Map Width Enhancement and the Inducer Flow Field Using a Shroud Bleed Slot
,”
ASME
Paper No. GT2010-22154. 10.1115/GT2010-22154
7.
Tamaki
,
H.
,
Unno
,
M.
,
Kawakubo
,
T.
, and
Hirata
,
Y.
,
2009
, “
Aerodynamic Design to Increase Pressure Ratio of Centrifugal Compressors for Turbochargers
,”
ASME
Paper No. GT2009-59160. 10.1115/GT2009-59160
8.
Oana
,
M.
,
Kawamoto
,
O.
,
Ohtani
,
H.
, and
Yamamoto
,
Y.
,
2004
, “
Approach to High-Performance Transonic Compressor Design
,”
J. Propul. Power.
,
20
(
1
), p.
164
.10.2514/1.9243
9.
Eisenlohr
,
G.
,
Krain
,
H.
,
Richter
,
F.
, and
Tiede
,
V.
,
2002
, “
Investigations of the Flow Through a High Pressure Ratio Centrifugal Impeller
,”
ASME
Paper No. GT-2002-30394.10.1115/GT2002-30394
10.
Yang
,
M.
,
Zheng
,
X.
,
Zhang
,
Y.
, and
Li
,
Z.
,
2008
, “
Improved Performance Model of Turbocharger Centrifugal Compressor
,”
ASME
Paper No. GT2008-50009. 10.1115/GT2008-50009
11.
Chen
,
H.
,
Guo
,
S.
,
Zhu
,
X.
,
Du
,
Z.
, and
Zhao
,
S.
,
2008
, “
Numerical Simulations of Onset of Volute Stall Inside a Centrifugal Compressor
,”
ASME
Paper No. GT2008-50036. 10.1115/GT2008-50036
12.
Mikami
,
C.
,
Yamada
,
K.
, and
Kawakubo
,
T.
,
2016
, “
Aerodynamic Design of a High Flow and High Pressure Ratio Centrifugal Compressor for a Marine-Use Turbocharger
,”
12th International Conference on Turbochargers and Turbocharging
, London, May
17
18
.
13.
Olivero
,
M.
,
Javed
,
A.
, and
Buijtenen
,
J.
,
2010
, “
Aerodynamic Analysis of a Micro Turbine Centrifugal Compressor
,”
ASME
Paper No. GT2010-23112. 10.1115/GT2010-23112
14.
Krain
,
H.
,
Hoffmann
,
B.
,
Rohne
,
K.
,
Eisenlohr
,
G.
, and
Richter
,
F.
,
2007
, “
Improved High Pressure Ratio Centrifugal Compressor
,”
ASME
Paper No. GT2007-27100. 10.1115/GT2007-27100
15.
Javed
,
A.
, and
Kamphues
,
E.
,
2014
, “
Evaluation of the Influence of Volute Roughness on Turbocharger Compressor Performance From a Manufacturing Perspective
,”
ASME
Paper No. GT2014-26949. 10.1115/GT2014-26949
16.
Harley
,
P.
,
Spence
,
S.
,
Early
,
J.
,
Filsinger
,
D.
, and
Dietrich
,
M.
,
2014
, “
Inlet Recirculation in Automotive Turbocharger Centrifugal Compressors
,”
11th International Conference on Turbochargers and Turbocharging
, London, May
13
14
.
17.
Fischer
,
T.
, and
Rätz
,
H.
,
2016
, “
Low Inertia Centrifugal Compressor Wheels: Influence of Back Disk Caity on Aerodynamic Losses and Axial Thrust Load
,”
12th International Conference on Turbochargers and Turbocharging
, London, May
17
18
.
18.
Krain
,
H.
, and
Hah
,
C.
,
2003
, “
Numerical and Experimental Investigation of the Unsteady Flow Field in a Transonic Centrifugal Compressor
,” International Gas Turbine Congress, Tokyo, Japan, Nov. 2–7, Paper No. Igtc TS-049.
19.
Krain
,
H.
,
Hoffmann
,
B.
, and
Pak
,
H.
,
1995
, “
Aerodynamics of a Centrifugal Compressor Impeller With Transonic Inlet Conditions
,”
ASME
Paper No. 95-GT-79.10.1115/95-GT-079
20.
Oh
,
J.
,
Buckley
,
C.
, and
Agrawal
,
G.
,
2008
, “
Numerical Investigation of Low Solidity Vaned Diffuser Performance in a High-Pressure Centrifugal Compressor
,”
ASME
Paper No. GT2008-50178. 10.1115/GT2008-50178
21.
Rajendran
,
R.
,
Ramamurthy
,
S.
, and
Mohanan
,
P.
,
2008
, “
Aerodynamic Investigation of Flow Through a Centrifugal Compressor Stage
,” Asian Congress of Fluid Mechanics, Daejeon, Korea.
22.
He
,
X.
,
Zheng
,
X.
,
Wei
,
J.
, and
Zeng
,
H.
,
2016
, “
Investigation of Vaned Diffuser Splitters on the Performance and Flow Control of High Pressure Ratio Centrifugal Compressors
,”
ASME
Paper No. GT2016-56255. 10.1115/GT2016-56255
23.
Erdmenger
,
R.
, and
Michelassi
,
V.
,
2015
, “
Influence of Tandem Inducers on the Performance of High Pressure Ratio Centrifugal Compressors
,”
ASME
Paper No. GT2015-43001. 10.1115/GT2015-43001
24.
Nili-Ahmadabadi
,
M.
,
Durali
,
M.
,
Hajilouy-Benisi
,
A.
, and
Motavalli
,
S.
,
2008
, “
Experimental & Numerical Investigation of a Centrifugal Compressor and Numerical Study of the Aera Ratio and Tip Clearance Effects on the Performance Characteristic
,”
ASME
Paper No. GT2008-50969. 10.1115/GT2008-50969
25.
Chen
,
H.
,
Tong
,
D.
, and
Wang
,
X.
,
2015
, “
Vortices and Performance of Internal and External Volutes
,”
ASME
Paper No. GT2015-42462. 10.1115/GT2015-42462
26.
Samale
,
A.
, and
Pacheco
,
J.
,
2014
, “
Volute CFD Modeling Evaluation for Centrifugal Compressors
,”
ASME
Paper No. GT2014-27274. 10.1115/GT2014-27274
27.
Newton
,
P.
,
Palenschat
,
T.
,
Martinez-Botas
,
R.
, and
Seiler
,
M.
, 2015, “Entropy Generation Rate a Mixed Flow Turbine Passage,” International Gas Turbine Congress, Tokyo, Japan, Nov.
15
20
.
28.
Herwig
,
H.
, and
Kock
,
F.
,
2006
, “
Local Entropy Production in Turbulent Shear Flows: A Tool for Evaluating Heat Transfer Performance
,”
J. Therm. Sci.
,
15
(
2
), p.
159
.10.1007/s11630-006-0159-7
29.
Sciubba
,
E.
,
1999
, “
Optimisation of Turbomachinery Components by Constrained Minimisation of the Local Entropy Production Rate
,”
Thermodynamic Optimization of Complex Energy Systems, Springer, Dordrecht
.
30.
Herwig
,
H.
, and
Kock
,
F.
,
2006
, “
Direct and Indirect Methods of Calculating Entropy Generation Rates in Turbulent Convective Heat Transfer Problems
,”
Heat Mass Transfer
,
43
(
3
), p.
207
.10.1007/s00231-006-0086-x
31.
Kock
,
F.
, and
Herwig
,
H.
,
2005
, “
Entropy Production Calculation for Turbulent Shear Flows and Their Implementation in CFD Codes
,”
SAGE J.
, pp.
672
680
.10.1016/j.ijheatfluidflow.2005.03.005
32.
Herwig
,
H.
, and
Wenterodt
,
T.
,
2012
, “
Entropie Für Ingenieure: Erfolgreich Das Entropie-Konzept Bei Energietechnischen Fragestellungen Anwenden
,” 1. Auflage, Vieweg+Teubner Verlag, Wiesbaden, Germany.
33.
Palenschat
,
T.
,
Newton
,
P.
,
Martinez-Botas
,
R.
,
Müller
,
M.
, and
Leweux
,
J.
,
2017
, “
3-D Computational Loss Analysis of an Asymmetric Volute Twin-Scroll Turbocharger
,”
ASME
Paper No. GT2017-64190. 10.1115/GT2017-64190
34.
Abel
,
M.
,
Martinez-Botas
,
R.
,
Newton
,
P.
,
Wöhr
,
M.
,
Müller
,
M.
, and
Leweux
,
J.
,
2018
, “
3D Computational Analysis of a Compressor for Heavy Duty Truck Engine Turbochargers
,”
ASME
Paper No. GT2018-75688. 10.1115/GT2018-75688
35.
Siemens PLM,
2016
, “
STAR-CCM+ Documentation—Version 11.06
,” Plano, TX.
36.
Schlichting
,
H.
,
Gersten
,
K.
, and
Krause
,
E.
,
2006
,
Grenzschicht-Theorie
, Vol.
10
.
Springer
,
Berli
n.
You do not currently have access to this content.