Abstract

Due to small footprint and high efficiency, a Supercritical CO2 (S-CO2) power cycle is considered to be one of the promising next-generation power cycles. Although S-CO2 is reported as a powerful cleaning agent, the performance of a power system operating with S-CO2 will also inevitably degrade over time. Previous researchers have shown that turbomachinery deterioration could be a major subject regarding the system performance degradation. Nevertheless, no quantitative evaluation has yet been made so far. In this study, the impact of the performance degradation of the S-CO2 turbomachinery on the overall performance of the system is analyzed quantitatively. The concept of Health Parameter is used to simulate turbomachinery degradation. To quantify the impact, an S-CO2 direct-cycle small modular reactor is selected as a target system. A transient analysis platform is built using a nuclear system safety analysis code and the deep neural network (DNN)-based S-CO2 turbomachinery off-design performance model. System dynamics are evaluated for primary frequency control ability and secondary load-following capability. Results show that the control problems during the transient state can occur when the output fluctuations are large and the performance degradation is severe. It has been confirmed that even control failures of the PID controllers can occur. Therefore, the performance degradation of turbomachinery must be monitored and considered, for an operation strategy for S-CO2 systems.

References

1.
Crespi
,
F.
,
Gavagnin
,
G.
,
Sánchez
,
D.
, and
Martínez
,
G. S.
,
2018
, “
Analysis of the Thermodynamic Potential of Supercritical Carbon Dioxide Cycles: A Systematic Approach
,”
ASME J. Eng. Gas Turbines Power
,
140
(
5
), p.
051701
.10.1115/1.4038125
2.
Son
,
S.
,
Heo
,
J. Y.
,
Kim
,
N. I.
,
Jamal
,
A.
, and
Lee
,
J. I.
,
2019
, “
Reduction of CO2 Emission for Solar Power Backup by Direct Integration of Oxy-Combustion Supercritical CO2 Power Cycle With Concentrated Solar Power
,”
Energy Convers. Manage.
,
201
, p.
112161
.10.1016/j.enconman.2019.112161
3.
Heo
,
J. Y.
,
Jin
,
J.
,
Kwon
, and
Lee
,
J. I.
,
2018
, “
A Study of Supercritical Carbon Dioxide Power Cycle for Concentrating Solar Power Applications Using an Isothermal Compressor
,”
ASME J. Eng. Gas Turbines Power
,
140
(
7
), p.
071702
.10.1115/1.4038476
4.
Banik
,
S.
,
Ray
,
S.
, and
De
,
S.
,
2016
, “
Thermodynamic Modelling of a Recompression CO2 Power Cycle for Low Temperature Waste Heat Recovery
,”
Appl. Therm. Eng.
,
107
, pp.
441
452
.10.1016/j.applthermaleng.2016.06.179
5.
U.S. Department of Energy
, 2020, “
Supercritical Carbon Dioxide Power Cycles Crosscut Initiative
,” U.S. Department of Energy, Washington, DC, accessed Feb. 20, 2020, https://www.energy.gov/sites/prod/files/2019/10/f67/Supercriti- cal%20Carbon%20Dioxide%20Power%20Cycles%20Crosscut%20Initiative.pdf
6.
Dostal
,
V.
,
Driscoll
,
M. J.
,
Hejzlar
,
P.
, and
Todreas
,
N. E.
,
2002
, “
A Supercritical CO2 Gas Turbine Power Cycle for Next-Generation Nuclear Reactors
,”
ASME
Paper No. ICONE10-22192.10.1115/ICONE10-22192
7.
Conboy
,
T. M.
,
Carlson
,
M. D.
, and
Rochau
,
G. E.
,
2014
, “
Dry-Cooled Supercritical CO2 Power for Advanced Nuclear Reactors
,”
ASME J. Eng. Gas Turbines Power
,
137
(
1
), p.
012901
.10.1115/1.4028080
8.
Edward
,
J. P.
,
Steven
,
A. W.
, and
Milton
,
E. V.
,
2011
, “
Supercritical CO2 Direct Cycle Gas Fast Reactor (SCGFR) Concept
,” Sandia National Lab., Albuquerque, NM, Report No. SAND2011-2525.
9.
Pope
,
M. A.
,
Hejzlar
,
P.
, and
Driscoll
,
M. J.
,
2006
, “
Thermal Hydraulics of a 2400 MWth Supercritical CO2-Direct Cycle GFR
,” Center for Advanced Nuclear Energy Systems, Massachusetts Institute of Technology, Cambridge, MA, Report No. MIT-ANP-TR-107.
10.
Kim
,
S. G.
,
Kim
,
M. G.
,
Bae
,
S. J.
, and
Lee
,
J. I.
,
2013
, “
Preliminary Design of S-CO2 Brayton Cycle for KAIST Micro Modular Reactor
,” Korean Nuclear Society Fall Meeting, Jeju, South Korea, Oct. 23–25.
11.
McHardy
,
J.
,
Stanford
,
T. B.
,
Benjamin
,
L. R.
,
Whiting
,
T. E.
, and
Chao
,
S. C.
,
1993
, “
Progress in Supercritical CO2 Cleaning
,”
SAMPE J.
,
29
(
5
), p.
20, 22–27
.
12.
Purtell
,
R.
,
Rothman
,
L.
,
Eldridge
,
B.
, and
Chess
,
C.
,
1993
, “
Precision Parts Cleaning Using Supercritical Fluids
,”
J. Vac. Sci. Technol.
,
11
(
4
), pp.
1696
1701
.10.1116/1.578481
13.
Pint
,
B. A.
, and
Pillai
,
R. R.
,
2019
, “
Lifetime Model Development for Supercritical CO2 CSP Systems
,” Oak Ridge National Lab. (ORNL), Oak Ridge, TN, Report No. ORNL/SPR-2019/1134.
14.
Kruizenga
,
A. M.
,
Fleming
,
D. D.
,
Carlson
,
M. D.
, and
Anstey
,
M.
,
2014
, “
Supercritical CO2 Heat Exchanger Fouling
,” Sandia National Lab. (SNL-CA)/Sandia National Lab.(SNL-NM), Livermore, CA/Albuquerque, NM, Report No. SAND2014-16991C.
15.
Walker
,
M.
,
Kruizenga
,
A. M.
, and
Withey
,
E. A.
,
2017
, “
Resolving Turbine Degradation
,” Sandia National Lab.(SNL-NM), Albuquerque, NM, Report No. SAND-2017-8300R.
16.
Kiakojoori
,
S.
, and
Khorasani
,
K.
,
2016
, “
Dynamic Neural Networks for Gas Turbine Engine Degradation Prediction, Health Monitoring and Prognosis
,”
Neural Comput. Appl.
,
27
(
8
), pp.
2157
2192
.10.1007/s00521-015-1990-0
17.
Lazarev
,
G. B.
,
Hrustalyov
,
V. A.
, and
Garievskij
,
M. V.
,
2018
,
Non-Baseload Operation in Nuclear Power Plants: Load Following and Frequency Control Modes of Flexible Operation
(Nuclear Energy Series), International Atomic Energy Agency, Vienna, Austria, Nuclear Energy Series No. NP-T-3.23, p.
173
.
18.
Undrill
,
J.
,
2018
, “
Primary Frequency Response and Control of Power System Frequency
,” Lawrence Berkeley National Laboratory, Berkeley, CA, Report No. NBNL-2001105.
19.
OECD/NEA,
2012
,
Nuclear Energy and Renewables: System Effects in Low-Carbon Electricity Systems
, Nuclear Energy Agency, Vienna, Austria, pp.
127
128
.
20.
Oh
,
B. S.
, and
Lee
,
J. I.
,
2019
, “
Study of Autonomous Control System for S-CO2 Power Cycle
,” Third European Conference on Supercritical CO2 (sCO2) Power Systems, Paris, France, Sept. 19–20, pp.
345
352
.
21.
Li
,
Y. G.
, and
Nilkitsaranont
,
P.
,
2009
, “
Gas Turbine Performance Prognostic for Condition-Based Maintenance
,”
Appl. Energy
,
86
(
10
), pp.
2152
2161
.10.1016/j.apenergy.2009.02.011
22.
Kim
,
S. G.
,
Oh
,
B. S.
,
Cho
,
S. K.
,
Baik
,
S. J.
,
Yu
,
H.
,
Moon
,
J.
, and
Lee
,
J. I.
,
2016
, “
Conceptual System Design of a Supercritical CO2 Cooled Micro Modular Reactor
,”
International Congress on High Temperature Reactor Technology 2016 (HTR2016)
, Las Vegas, NV, Nov. 6–10,
American Nuclear Society
.
23.
Wright
,
S. A.
,
Radel
,
R. F.
,
Vernon
,
M. E.
,
Rochau
,
G. E.
, and
Pickard
,
P. S.
,
2010
, “Operation and Analysis of a Supercritical CO2 Brayton Cycle,” Sandia National Lab., Albuquerque, NM, Report No. SAND2010-0171.
24.
Oh
,
B. S.
,
Lee
,
J. I.
,
Kim
,
S. G.
,
Cho
,
S. K.
, and
Yu
,
H.
,
2016
, “
Transient Analyses of S-CO2 Cooled KAIST Micro Modular Reactor With GAMMA+ Code
,”
The 11th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, Operation and Safety (NUTHOS-11)
, Gyeongju, South Korea, Oct. 9–13,
American Nuclear Society
.
25.
Oh
,
B. S.
,
2017
, “Safety Analysis and Development of Control Logic of KAIST Micro Modular Reactor with GAMMA+ Code,” Master thesis, KAIST, Daejeon, South Korea.
26.
Ziegler
,
J. G.
, and
Nichols
,
N. B.
,
1942
, “
Optimum Settings for Automatic Controllers
,”
Trans. ASME
,
64
(
11
), pp.
759
768
.
27.
Lim
,
H. S.
, and
No
,
H. C.
,
2006
, “
GAMMA Multidimensional Multicomponent Mixture Analysis to Predict Air Ingress Phenomena in an HTGR
,”
Nucl. Sci. Eng.
,
152
(
1
), pp.
87
97
.10.13182/NSE06-5
28.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2010
, “
NIST Standard Reference Database 23, Reference Fluid Thermodynamic and Transport Properties (REFPROP), Version 9.0
,” Standard Reference Data Program,
National Institute of Standards and Technology
, Gaithersburg, MD.
29.
Span
,
R.
, and
Wagner
,
W.
,
1996
, “
A New Equation of State for Carbon Dioxide Covering the Fluid Region From the Triple‐Point Temperature to 1100 K at Pressures Up to 800 MPa
,”
J. Phys. Chem. Ref. Data
,
25
(
6
), pp.
1509
1596
.10.1063/1.555991
30.
Baik
,
S.
,
Kim
,
S. G.
,
Lee
,
J.
, and
Lee
,
J. I.
,
2017
, “
Study on CO2–Water Printed Circuit Heat Exchanger Performance Operating Under Various CO2 Phases for S-CO2 Power Cycle Application
,”
Appl. Therm. Eng.
,
113
, pp.
1536
1546
.10.1016/j.applthermaleng.2016.11.132
31.
Floyd
,
J.
,
Alpy
,
N.
,
Moisseytsev
,
A.
,
Haubensack
,
D.
,
Rodriguez
,
G.
,
Sienicki
,
J.
, and
Avakian
,
G.
,
2013
, “
A Numerical Investigation of the sCO2 Recompression Cycle Off-Design Behaviour, Coupled to a Sodium Cooled Fast Reactor, for Seasonal Variation in the Heat Sink Temperature
,”
Nucl. Eng. Des.
,
260
, pp.
78
92
.10.1016/j.nucengdes.2013.03.024
32.
Moisseytsev
,
A.
, and
Sienicki
,
J. J.
,
2007
, “Development of a Plant Dynamics Computer Code for Analysis of a Supercritical Carbon Dioxide Brayton Cycle Energy Converter Coupled to a Natural Circulation Lead-Cooled Fast Reactor,”
Argonne National Laboratory (ANL)
,
Argonne, IL
, Report No. ANL-06/27.
33.
Son
,
S.
,
Jeong
,
Y.
,
Cho
,
S. K.
, and
Lee
,
J. I.
,
2020
, “
Development of Supercritical CO2 Turbomachinery Off-Design Model Using 1D Mean-Line Method and Deep Neural Network
,”
Appl. Energy
,
263
, p.
114645
.10.1016/j.apenergy.2020.114645
34.
Vinod
,
N.
, and
Hinton
,
G. E.
,
2010
, “
Rectified Linear Units Improve Restricted Boltzmann Machines
,” Proceedings of the 27th International Conference on Machine Learning (
ICML-10
), Haifa, Israel, June 21–24.https://www.cs.toronto.edu/~fritz/absps/reluICML.pdf
35.
Bebis
,
G.
, and
Georgiopoulos
,
M.
,
1994
, “
Feed-Forward Neural Networks
,”
IEEE Potentials
,
13
(
4
), pp.
27
31
.10.1109/45.329294
36.
Lee
,
J.
,
2016
, “
Study of Improved Design Methodology of S-CO2 Power Cycle Compressor for the Next Generation Nuclear System Application
,” Ph.D. thesis, KAIST, Daejeon, South Korea.
37.
Cho
,
S.
, and
Kuk
,
2016
, “
Study on Supercritical CO2 Radial Turbine Design Methodology for Decay Heat Removal System of Sodium Cooled Fast Reactor
,” Master thesis, KAIST, Daejeon, South Korea.
38.
Kingma
,
D. P.
, and
Ba
,
J.
,
2014
, “
Adam: A Method for Stochastic Optimization
,” arXiv preprint arXiv:1412.6980.
39.
Paszke
,
A.
,
Gross
,
S.
,
Massa
,
F.
,
Lerer
,
A.
,
Bradbury
,
J.
,
Chanan
,
G.
, Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S.,
2019
, “
PyTorch: An Imperative Style, High-Performance Deep Learning Library
,”
Advances in Neural Information Processing Systems 32
, Vancouver, BC, Canada, Dec. 8–14, pp.
8024
8035
.
40.
Kurz
,
R.
, and
Brun
,
K.
,
2007
, “
Gas Turbine Tutorial-Maintenance and Operating Practices Effects on Degradation and Life
,”
Proceedings of the 36th Turbomachinery Symposium
, College Station, TX, Dec. 11–15,
Texas A&M University, Turbomachinery Laboratories
.
41.
Naeem
,
M.
,
Singh
,
R.
, and
Probert
,
D.
,
1998
, “
Implications of Engine Deterioration for Fuel Usage
,”
Appl. Energy
,
59
(
2–3
), pp.
125
146
.10.1016/S0306-2619(98)00009-9
42.
Brooks
,
F. J.
,
2000
, “
GE Gas Turbine Performance Characteristics
,”
GE Power Systems
,
Schenectady, NY
.
43.
Carstens
,
N.
,
2007
, “
Control Strategies for Supercritical Carbon Dioxide Power Conversion Systems
,”
Ph.D. thesis
, Massachusetts Institute of Technology, Cambridge, MA.https://dspace.mit.edu/handle/1721.1/41295
44.
Geer
,
G.
,
2013
, “
Load Following Experience of PWRs
,”
IAEA Technical Meeting on Flexible (Non-Baseload) Operation Approaches for Nuclear Power Plants
, Paris, France, Oct. 6–8, pp. 34–35
.
You do not currently have access to this content.