Abstract

An excessive rotor axial thrust in any turbomachine can cause critical operational problems, and rotor axial thrust balancing has always attracted much attention. The present numerical study is focused on axial thrust balancing for a cryogenic liquid turbine expander, whose axial thrust balancing is typically challenging because of its small impeller size and large axial thrust. A computational fluid dynamics (CFD) simulation is conducted in a real turbine expander environment constituted by main and gap flow domains with allowing for the thermodynamic effect of liquefied air. The balance hole influential mechanism on the main and gap flows is explored, and its influence on the expander axial thrust and overall performance is quantified. The results show that the use of balance holes creates a highly swirling gap flow, and the static pressure over the impeller disk back-side surface decreases to produce a small axial component force and axial thrust, but the turbine expander overall efficiency drops by 1.1 and 2.8 points at 100% and 50% design flow, respectively, due to an increased internal leakage loss and distorted impeller flow. In addition, a parametric study is conducted to analyze the effect of balance hole diameter, circumferential position, and radial position on expander axial thrust and overall performance. The results indicate that the axial thrust is sensitive to both the balance hole diameter and circumferential position but less sensitive to its radial position, while the overall efficiency is influenced by all three parameters.

References

1.
Haesloop
,
B.
, and
Kimmel
,
H.
,
1998
, “
Improved Cryogenic Gas Processing Efficiency Due to Advancements in Liquid Turbine Expanders
,”
Cryogenic Gas Processing I, the AIChE 1998 Spring National Meeting
, New York, Mar. 8–12, Paper No. 42b.
2.
Kimmel
,
H.
,
1997
, “
Speed Controlled Turbines for Power Recovery in Cryogenic and Chemical Processing
,”
World Pumps
,
1997
(
369
), pp.
46
49
.10.1016/S0262-1762(00)80137-6
3.
Habets
,
G.
, and
Kimmel
,
H.
,
1998
, “
Economics of Cryogenic Turbine Expanders
,”
Int. J. Hydrocarbon Eng.
,
4
(
1
), pp.
69
74
.
4.
Hudson
,
H. M.
,
Wilkinson
,
J. D.
,
Cuellar
,
K. T.
, and
Pierce
,
M. C.
,
2003
, “
Integrated Liquids Recovery Technology Improves LNG Production Efficiency
,”
The 82nd Annual Convention of the Gas Processors Association
,
San Antonio, TX
, Mar. 11, pp.
1
8
.https://www.honeywell-uop.cn/wpcontent/uploads/2011/02/UOP-Intregrated-Liquids-Recovery-Improves-LNG-Efficiency-Ortloff-Tech-Paper.pdf
5.
Chiu
,
C.
, and
Kimmel
,
H. E.
,
2001
, “
Turbine Expander Technology Development for LNG Plants
,”
The 13th International Conference & Exhibition on Liquefied Natural Gas
,
Seoul, South Korea
, May 4–6, Paper No. Po-37.http://www.ivt.ntnu.no/ept/fag/tep4215/innhold/LNG%20Conferences/2001/Data/POSTERSV/6EQUIPME/Po-37-ch.pdf
6.
Karassik
,
I.
, and
McGuire
,
J. T.
,
2012
,
Centrifugal Pumps
, 2nd ed.,
Springer Science & Business Media
,
New York
.
7.
Dong
,
W.
,
Chu
,
W.
,
Li
,
X.
, and
Wu
,
Y.
,
2016
, “
Numerical Analysis of the Influences of Balance Hole Diameter on the Flow Characteristics of the Back Chamber of Centrifugal Pump
,”
ASME
Paper No. GT2016-56372.10.1115/GT2016-56372
8.
Cao
,
W. D.
,
Dai
,
X.
, and
Qi
,
X.
,
2015
, “
Effect of Impeller Reflux Balance Holes on Pressure and Axial Force of Centrifugal Pump
,”
J. Cent. South Univ.
,
22
(
5
), pp.
1695
1706
.10.1007/s11771-015-2688-2
9.
Zhang
,
S.
,
Li
,
H.
, and
Xi
,
D.
,
2019
, “
Investigation of the Integrated Model of Side Chamber, Wear-Rings Clearance, and Balancing Holes for Centrifugal Pumps
,”
ASME J. Fluids Eng.
,
141
(
10
), p.
101101
.10.1115/1.4043059
10.
Salvadori
,
S.
,
Marini
,
A.
, and
Martelli
,
F.
,
2012
, “
Methodology for the Residual Axial Thrust Evaluation in Multistage Centrifugal Pumps
,”
Eng. Appl. Comput. Fluid Mech.
,
6
(
2
), pp.
271
284
.10.1080/19942060.2012.11015420
11.
Massey
,
I.
,
1985
, “
Subsynchronous Vibration Problems in High-Speed Multistage Centrifugal Pumps
,”
14th Turbomachinery Symposium
,
Houston, TX
, Oct. 22–24, pp.
11
16
.10.21423/R16954
12.
Stepanoff
,
A. J.
,
1957
,
Centrifugal and Axial Flow Pumps Theory Design and Application
, 2nd ed.,
Wiley
,
New York
.
13.
Girdhar
,
P.
, and
Moniz
,
O.
,
2011
,
Practical Centrifugal Pumps
,
Elsevier
,
Oxford, UK
.
14.
Nourbakhsh
,
A.
,
Jaumotte
,
A.
,
Hirsch
,
C.
, and
Parizi
,
H. B.
,
2008
,
Turbopumps and Pumping Systems
,
Springer
,
Berlin Heidelberg
.
15.
Shimura
,
T.
,
Kawasaki
,
S.
,
Uchiumi
,
M.
,
Kimura
,
T.
, and
Matsui
,
J.
,
2012
, “
Internal Flow and Axial Thrust Balancing of a Rocket Pump
,”
ASME J. Fluids Eng.
,
134
(
4
), p.
041103
.10.1115/1.4006470
16.
Lobanoff
,
V. S.
, and
Ross
,
R. R.
,
2013
,
Centrifugal Pumps: Design and Application
, 2nd ed.,
Gulf Professional Publishing
,
Houston, TX
.
17.
Babayigit
,
O.
,
Ozgoren
,
M.
,
Aksoy
,
M. H.
, and
Kocaaslan
,
O.
,
2017
, “
Experimental and CFD Investigation of a Multistage Centrifugal Pump Including Leakages and Balance Holes
,”
Desalin. Water Treat.
,
67
(
3
), pp.
28
40
.10.5004/dwt.2017.20153
18.
Park
,
S. H.
, and
Morrison
,
G. L.
,
2009
, “
Analysis of the Flow Between the Impeller and Pump Casing Back
,”
ASME
Paper No. FEDSM2009-78185.10.1115/FEDSM2009-78185
19.
Zhang
,
L.
,
Jiang
,
J.
,
Xiao
,
Z.
, and
Li
,
Y.
,
2014
, “
Numerical Investigation of the Effect of Balancing-Hole on the Axial Force of a Partial Emission Pump
,”
ASME
Paper No. FEDSM2014-21418.10.1115/FEDSM2014-21418
20.
ANSYS
,
2013
,
ANSYS CFX-Solver Theory Guide
,
ANSYS
,
Canonsburg, PA
.
21.
Mortazavi
,
F.
,
Riasi
,
A.
, and
Nourbakhsh
,
A.
,
2017
, “
Numerical Investigation of Back Vane Design and Its Impact on Pump Performance
,”
ASME J. Fluids Eng.
,
139
(
12
), p.
121104
.10.1115/1.4037281
22.
Ye
,
X.
,
Hu
,
J.
,
Wang
,
J.
,
Feng
,
Y.
, and
Jiang
,
W.
,
2013
, “
Numerical and Experimental Investigation of Performance and Reliability in New Reverse Osmosis Seawater Desalination High Pressure Pump
,”
ASME
Paper No. IMECE2013-62598.10.1115/IMECE2013-62598
23.
Qiao
,
B.
,
Ju
,
Y.
, and
Zhang
,
C.
,
2019
, “
Numerical Investigation on Labyrinth Seal Leakage Flow and Its Effects on Aerodynamic Performance for a Multistage Centrifugal Compressor
,”
ASME J. Fluids Eng.
,
141
(
7
), p.
071107
.10.1115/1.4042370
24.
Song
,
P.
,
Sun
,
J.
,
Wang
,
K.
,
Li
,
K.
, and
Huo
,
C.
,
2016
, “
Numerical Study of Cavitating Flow in Two-Phase LNG Expander
,”
ASME
Paper No. GT2016-56780.10.1115/GT2016-56780
25.
Rodio
,
M. G.
,
Giorgi
,
M. G.
,
De
., and
Ficarella
,
A.
,
2012
, “
Influence of Convective Heat Transfer Modeling on the Estimation of Thermal Effects in Cryogenic Cavitating Flows
,”
Int. J. Heat Mass Transfer
,
55
(
23–24
), pp.
6538
6554
.10.1016/j.ijheatmasstransfer.2012.06.060
26.
Keep
,
J. A.
, and
Jahn
,
I. H. J.
,
2019
, “
Design of an Annular-Radial Diffuser for Operation With a Supercritical CO2 Radial Inflow Turbine
,”
ASME J. Eng. Gas Turbines Power
,
141
(
8
), pp.
1
12
.10.1115/1.4043431
27.
Kluß
,
D.
,
Stoff
,
H.
, and
Wiedermann
,
A.
,
2009
, “
Effect of Wakes and Secondary Flow on Re-Attachment of Turbine Exit Annular Diffuser Flow
,”
ASME J. Turbomach
.,
131
(
4
), pp.
1
12
.10.1115/1.3070577
28.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
, and
Coleman
,
H.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
29.
Poncet
,
S.
,
Chauve
,
M. P.
, and
Le Gal
,
P.
,
2005
, “
Turbulent Rotating Disk Flow With Inward Throughflow
,”
J. Fluid Mech.
,
522
, pp.
253
262
.10.1017/S0022112004002046
30.
Bödewadt
,
U. T.
,
1940
, “
Die Drehströmung Über Festem Grunde
,”
Z. Angew. Math. Mech.
,
20
(
5
), pp.
241
253
.10.1002/zamm.19400200502
31.
Ekman
,
V. W.
,
1905
, “
On the Influence of the Earth's Rotation on Ocean-Currents
,”
Ark. Mat. Astron. Fys.
,
2
(
11
), pp.
1
52
.http://jhir.library.jhu.edu/handle/1774.2/33989
32.
Poncet
,
S.
,
Schiestel
,
R.
, and
Chauve
,
M.-P.
,
2005
, “
Centrifugal Flow in a Rotor-Stator
,”
ASME J. Fluids Eng.
,
127
(
4
), pp.
787
794
.10.1115/1.1949645
You do not currently have access to this content.