Abstract

This study numerically investigates the effect of spray-wall interactions on thermoacoustic instability prediction. The large-eddy simulations (LES)-based flame transfer function (FTF) and the convective time delay methods are used by combining the Helmholtz acoustic solver to predict a single spray flame under the so-called slip and film spray-wall conditions. It is found that considering more realistic film liquid and a wall surface interaction model achieves a more accurate phase lag in both of the time lag evaluations compared to the experimental results. Additionally, the results show that a new time delay exists between the liquid film fluctuation and the unsteady heat release, which explains the larger phase value in the film spray-wall condition than in the slip condition. Moreover, the prediction capability of the FTF framework and the convective time delay methodology in the linear regime is also presented. In general, the instability frequency differences predicted using the FTF framework under the film condition are less than 10 Hz compared with the experimental data. However, an underestimation of the numerical gain value leads to requiring a change in the forcing position and an improvement in the numerical models. Due to the ambiguous definition of the gain value in the convective time delay method, this approach leads to arbitrary and uncertain thermoacoustic instability predictions.

Reference

1.
Poinsot
,
T.
,
2017
, “
Prediction and Control of Combustion Instabilities in Real Engines
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
1
28
.10.1016/j.proci.2016.05.007
2.
Huang
,
Y.
, and
Yang
,
V.
,
2009
, “
Dynamics and Stability of Lean-Premixed Swirl-Stabilized Combustion
,”
Prog. Energy Combust. Sci.
,
35
(
4
), pp.
293
364
.10.1016/j.pecs.2009.01.002
3.
Zettervall
,
N.
,
Worth
,
N. A.
,
Mazur
,
M.
,
Dawson
,
J. R.
, and
Fureby
,
C.
,
2019
, “
Large Eddy Simulation of CH4-Air and C2H4-Air Combustion in a Model Annular Gas Turbine Combustor
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5223
5231
.10.1016/j.proci.2018.06.021
4.
Kraus
,
C.
,
Selle
,
L.
, and
Poinsot
,
T.
,
2018
, “
Coupling Heat Transfer and Large Eddy Simulation for Combustion Instability Prediction in a Swirl Burner
,”
Combust. Flame
,
191
, pp.
239
251
.10.1016/j.combustflame.2018.01.007
5.
Chen
,
Z. X.
,
Langella
,
I.
,
Swaminathan
,
N.
,
Stöhr
,
M.
,
Meier
,
W.
, and
Kolla
,
H.
,
2019
, “
Large Eddy Simulation of a Dual Swirl Gas Turbine Combustor: Flame/Flow Structures and Stabilisation Under Thermoacoustically Stable and Unstable Conditions
,”
Combust. Flame
,
203
, pp.
279
300
.10.1016/j.combustflame.2019.02.013
6.
Ghani
,
A.
,
Poinsot
,
T.
,
Gicquel
,
L.
, and
Müller
,
J.-D.
,
2016
, “
LES Study of Transverse Acoustic Instabilities in a Swirled Kerosene/Air Combustion Chamber
,”
Flow Turbul. Combust.
,
96
(
1
), pp.
207
226
.10.1007/s10494-015-9654-9
7.
Wolf
,
P.
,
Staffelbach
,
G.
,
Gicquel
,
L.
,
Müller
,
J.-D.
, and
Poinsot
,
T.
,
2012
, “
Acoustic and Large Eddy Simulation Studies of Azimuthal Modes in Annular Combustion Chambers
,”
Combust. Flame
,
159
(
11
), pp.
3398
3413
.10.1016/j.combustflame.2012.06.016
8.
Noh
,
D.
,
Karlis
,
E.
,
Navarro-Martinez
,
S.
,
Hardalupas
,
Y.
,
Taylor
,
A.
,
Fredrich
,
D.
, and
Jones
,
W.
,
2019
, “
Azimuthally-Driven Subharmonic Thermoacoustic Instabilities in a Swirl-Stabilised Combustor
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5333
5341
.10.1016/j.proci.2018.07.090
9.
Tay-Wo-Chong
,
L.
, and
Polifke
,
W.
,
2013
, “
Large Eddy Simulation-Based Study of the Influence of Thermal Boundary Condition and Combustor Confinement on Premix Flame Transfer Functions
,”
ASME J. Eng. Gas Turbines Power
,
135
(
2
), p.
021502
.10.1115/1.4007734
10.
Zhang
,
M.
,
2016
, “
Large-Eddy Simulation and Linear Acoustic Analysis of a Diffusion Swirling Flame Under Forcing and Self-Excitation
,”
ASME Paper No. GT2016-56405.
10.1115/GT2016-56405
11.
Poinsot
,
T.
, and
Veynante
,
D.
,
2005
,
Theoretical and Numerical Combustion
, 2nd ed,
R.T. Edwards
,
Philadelphia, PA
.
12.
Mirat
,
C.
,
Durox
,
D.
, and
Schuller
,
T.
,
2015
, “
Stability Analysis of a Swirl Spray Combustor Based on Flame Describing Function
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3291
3298
.10.1016/j.proci.2014.08.020
13.
Ghani
,
A.
,
Gicquel
,
L.
, and
Poinsot
,
T.
,
2015
, “
Acoustic Analysis of a Liquid Fuel Swirl Combustor Using Dynamic Mode Decomposition
,”
ASME Paper No. GT2015-42769.
10.1115/GT2015-42769
14.
Han
,
X.
,
Li
,
J.
, and
Morgans
,
A. S.
,
2015
, “
Prediction of Combustion Instability Limit Cycle Oscillations by Combining Flame Describing Function Simulations With a Thermoacoustic Network Model
,”
Combust. Flame
,
162
(
10
), pp.
3632
3647
.10.1016/j.combustflame.2015.06.020
15.
Dupuy
,
F.
,
Gatti
,
M.
,
Mirat
,
C.
,
Gicquel
,
L.
,
Nicoud
,
F.
, and
Schuller
,
T.
,
2020
, “
Combining Analytical Models and LES Data to Determine the Transfer Function From Swirled Premixed Flames
,”
Combust. Flame
,
217
, pp.
222
236
.10.1016/j.combustflame.2020.03.026
16.
Bauerheim
,
M.
,
Staffelbach
,
G.
,
Worth
,
N. A.
,
Dawson
,
J. R.
,
Gicquel
,
L.
, and
Poinsot
,
T.
,
2015
, “
Sensitivity of LES-Based Harmonic Flame Response Model for Turbulent Swirled Flames and Impact on the Stability of Azimuthal Modes
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3355
3363
.10.1016/j.proci.2014.07.021
17.
Jones
,
W. P.
,
Marquis
,
A. J.
, and
Vogiatzaki
,
K.
,
2014
, “
Large-Eddy Simulation of Spray Combustion in a Gas Turbine Combustor
,”
Combust. Flame
,
161
(
1
), pp.
222
239
.10.1016/j.combustflame.2013.07.016
18.
Giusti
,
A.
, and
Mastorakos
,
E.
,
2017
, “
Detailed Chemistry LES/CMC Simulation of a Swirling Ethanol Spray Flame Approaching Blow-Off
,”
Proc. Combust. Inst.
,
36
(
2
), pp.
2625
2632
.10.1016/j.proci.2016.06.035
19.
Shum-Kivan
,
F.
,
Santiago
,
J. M.
,
Verdier
,
A.
,
Riber
,
E.
,
Renou
,
B.
,
Cabot
,
G.
, and
Cuenot
,
B.
,
2017
, “
Experimental and Numerical Analysis of a Turbulent Spray Flame Structure
,”
Proc. Combust. Inst.
,
36
(
2
), pp.
2567
2575
.10.1016/j.proci.2016.06.039
20.
Tyliszczak
,
D.
,
Cavaliere
,
A.
, and
Mastorakos
,
E.
,
2014
, “
LES/CMC of Blow-Off in a Liquid Fueled Swirl Burner
,”
Flow Turbul. Combust.
,
92
(
1–2
), pp.
237
267
.10.1007/s10494-013-9477-5
21.
Franzelli
,
B.
,
Vié
,
A.
,
Boileau
,
M.
,
Fiorina
,
B.
, and
Darabiha
,
N.
,
2017
, “
Large Eddy Simulation of Swirled Spray Flame Using Detailed and Tabulated Chemical Descriptions
,”
Flow Turbul. Combust.
,
98
(
2
), pp.
633
661
.10.1007/s10494-016-9763-0
22.
Boileau
,
M.
,
Pascaud
,
S.
,
Riber
,
E.
,
Cuenot
,
B.
,
Gicquel
,
L.
,
Poinsot
,
T.
, and
Cazalens
,
M.
,
2008
, “
Investigation of Two-Fluid Methods for Large Eddy Simulation of Spray Combustion in Gas Turbines
,”
Flow Turbul. Combust.
,
80
(
3
), pp.
291
321
.10.1007/s10494-007-9123-1
23.
Sanjosé
,
M.
,
Senoner
,
J.
,
Jaegle
,
F.
,
Cuenot
,
B.
,
Moreau
,
S.
, and
Poinsot
,
T.
,
2011
, “
Fuel Injection Model for Euler–Euler and Euler–Lagrange Large-Eddy Simulations of an Evaporating Spray Inside an Aeronautical Combustor
,”
Int. J. Multiphase Flow
,
37
(
5
), pp.
514
529
.10.1016/j.ijmultiphaseflow.2011.01.008
24.
Paulhiac
,
D.
,
Cuenot
,
B.
,
Riber
,
E.
,
Esclapez
,
L.
, and
Richard
,
S.
,
2020
, “
Analysis of the Spray Flame Structure in a Lab-Scale Burner Using Large Eddy Simulation and Discrete Particle Simulation
,”
Combust. Flame
,
212
, pp.
25
38
.10.1016/j.combustflame.2019.10.013
25.
Eckel
,
G.
,
Grohmann
,
J.
,
Cantu
,
L.
,
Slavinskaya
,
N.
,
Kathrotia
,
T.
,
Rachner
,
M.
,
Clercq
,
P.
,
Meier
,
W.
, and
Aigner
,
M.
,
2019
, “
LES of a Swirl-Stabilized Kerosene Spray Flame With a Multi-Component Vaporization Model and Detailed Chemistry
,”
Combust. Flame
,
207
, pp.
134
152
.10.1016/j.combustflame.2019.05.011
26.
Tachibana
,
S.
,
Saito
,
K.
,
Yamamoto
,
T.
,
Makida
,
M.
,
Kitano
,
T.
, and
Kurose
,
R.
,
2015
, “
Experimental and Numerical Investigation of Thermo-Acoustic Instability in a Liquid-Fuel Aero-Engine Combustor at Elevated Pressure: Validity of Large-Eddy Simulation of Spray Combustion
,”
Combust. Flame
,
162
(
6
), pp.
2621
2637
.10.1016/j.combustflame.2015.03.014
27.
Schiavo
,
E. L.
,
Laera
,
D.
,
Riber
,
E.
,
Gicquel
,
L.
, and
Poinsot
,
T.
,
2020
, “
Effects of Liquid Fuel/Wall Interaction on Thermoacoustic Instabilities in Swirling Spray Flames
,”
Combust. Flame
,
219
, pp.
86
101
.10.1016/j.combustflame.2020.04.015
28.
Prieur
,
K.
,
2017
, “
Dynamique de la Combustion Dans un Foyer Annulaire Multi-Injecteurs Diphasique
,” Ph.D. dissertation,
Université Paris-Saclay
,
Paris, France
.
29.
Vignat
,
G.
,
Durox
,
D.
,
Prieur
,
K.
, and
Candel
,
S.
,
2019
, “
An Experimental Study Into the Effect of Injector Pressure Loss on Self-Sustained Combustion Instabilities in a Swirled Spray Burner
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5205
5213
.10.1016/j.proci.2018.06.125
30.
Prieur
,
K.
,
Durox
,
D.
,
Beaunier
,
J.
,
Schuller
,
T.
, and
Candel
,
S.
,
2017
, “
Ignition Dynamics in an Annular Combustor for Liquid Spray and Premixed Gaseous Injection
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3717
3724
.10.1016/j.proci.2016.08.008
31.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow Turbul. Combust.
,
62
(
3
), pp.
183
200
.10.1023/A:1009995426001
32.
Ranzi
,
E.
,
Frassoldati
,
A.
,
Stagni
,
A.
,
Pelucchi
,
M.
,
Cuoci
,
A.
, and
Faravelli
,
T.
,
2014
, “
Reduced Kinetic Schemes of Complex Reaction Systems: Fossil and Biomass-Derived Transportation Fuels
,”
Int. J. Chem. Kinet.
,
46
(
9
), pp.
512
542
.10.1002/kin.20867
33.
Nguyen
,
P.
,
Vervisch
,
L.
,
Subramanian
,
V.
, and
Domingo
,
P.
,
2010
, “
Multi-Dimensional Flamelet-Generated Manifolds for Partially Premixed Combustion
,”
Combust. Flame
,
157
(
1
), pp.
43
61
.10.1016/j.combustflame.2009.07.008
34.
Lodier
,
G.
,
Vervisch
,
L.
,
Moureau
,
V.
, and
Domingo
,
P.
,
2011
, “
Composition-Space Premixed Flamelet Solution With Differential Diffusion for In Situ Flamelet-Generated Manifolds
,”
Combust. Flame
,
158
(
10
), pp.
2009
2016
.10.1016/j.combustflame.2011.03.011
35.
Morsi
,
S. A.
, and
Alexander
,
A. J.
,
1972
, “
An Investigation of Particle Trajectories in Two-Phase Flow Systems
,”
J. Fluid Mech.
,
55
(
02
), pp.
193
208
.10.1017/S0022112072001806
36.
Beale
,
J. C.
, and
Reitz
,
R. D.
,
1999
, “
Modeling Spray Atomization With the Kelvin-Helmholtz/Rayleigh-Taylor Hybrid Model
,”
Atomization Sprays
,
9
, pp.
623
650
.10.1615/AtomizSpr.v9.i6.40
37.
Stanton
,
D. W.
, and
Rutland
,
C. J.
,
1998
, “
Multi-Dimensional Modeling of Thin Liquid Films and Spray-Wall Interactions Resulting From Impinging Sprays
,”
Int. J. Heat Mass Transfer
,
41
(
20
), pp.
3037
3054
.10.1016/S0017-9310(98)00054-4
38.
O'Rourke
,
P. J.
, and
Amsden
,
A. A.
,
1996
, “
A Particle Numerical Model for Wall Film Dynamics in Port-Fuel Injected Engines
,”
SAE Paper No. 961961.
39.
Kakimpa
,
B.
,
Morvan
,
H.
, and
Hibberd
,
S.
,
2015
, “
The Depth-Averaged Numerical Simulation of Laminar Thin-Film Flows With Capillary Waves
,”
ASME J. Eng. Gas Turbines Power
,
138
(
11
), p.
112501
.10.1115/1.4033471
40.
Nicoud
,
F.
,
Benoit
,
L.
,
Sensiau
,
C.
, and
Poinsot
,
T.
,
2007
, “
Acoustic Modes in Combustors With Complex Impedances and Multidimensional Active Flames
,”
AIAA J
,.
45
(
2
), pp.
426
441
.10.2514/1.24933
41.
Patel
,
N.
, and
Menon
,
S.
,
2008
, “
Simulation of Spray-Turbulence-Flame Interactions in a Lean Direct Injection Combustor
,”
Combust. Flame
,
153
(
1–2
), pp.
228
257
.10.1016/j.combustflame.2007.09.011
42.
Andreini
,
A.
,
Facchini
,
B.
,
Giusti
,
A.
,
Vitale
,
I.
, and
Turrini
,
F.
,
2013
, “
Thermoacoustic Analysis of a Full Annular Aeroengine Lean Combustor With Multi-Perforated Liners
,”
AIAA Paper No. 2013-2099.
10.2514/6.2013-2099
43.
Campa
,
G.
, and
Camporeale
,
S. M.
,
2014
, “
Prediction of the Thermoacoustic Combustion Instabilities in Practical Annular Combustors
,”
ASME J. Eng. Gas Turbines Power
,
136
(
9
), p.
091504
.10.1115/1.4027067
44.
Giauque
,
A.
,
Selle
,
L.
,
Gicquel
,
L.
,
Poinsot
,
T.
,
Buechner
,
H.
,
Kaufmann
,
P.
, and
Krebs
,
W.
,
2005
, “
System Identification of a Large-Scale Swirled Partially Premixed Combustor Using LES and Measurements
,”
J. Turbul.
,
6
(
21
), pp.
N21
20
.10.1080/14685240512331391985
45.
Mueller
,
M. E.
,
2020
, “
Physically-Derived Reduced-Order Manifold-Based Modeling for Multi-Modal Turbulent Combustion
,”
Combust. Flame
,
214
, pp.
287
305
.10.1016/j.combustflame.2020.01.004
46.
Hu
,
Y.
,
Olguin
,
H.
, and
Gutheil
,
E.
,
2017
, “
Transported Joint Probability Density Function Simulation of Turbulent Spray Flames Combined With a Spray Flamelet Model Using a Transported Scalar Dissipation Rate
,”
Combust. Sci. Technol.
,
189
(
2
), pp.
322
339
.10.1080/00102202.2016.1214584
47.
Franzelli
,
B.
,
Vié
,
A.
, and
Ihme
,
M.
,
2015
, “
On the Generalisation of the Mixture Fraction to a Monotonic Mixing-Describing Variable for the Flamelet Formulation of Spray Flames
,”
Combust. Theory Model.
,
19
(
6
), pp.
773
806
.10.1080/13647830.2015.1099740
You do not currently have access to this content.