Abstract

The combustion properties of hydrogen make premixed hydrogen-air flames very prone to boundary layer flashback. This paper describes the improvement and extension of a boundary layer flashback model from Hoferichter et al. (2017, “Prediction of Confined Flame Flashback Limits Using Boundary Layer Separation Theory,” ASME J. Eng. Gas Turbines Power, 139(2), p. 021505) for flames confined in burner ducts. The original model did not perform well at higher preheat temperatures and overpredicted the backpressure of the flame at flashback by 4–5×. By simplifying the Lewis number-dependent flame speed computation and by applying a generalized version of Stratford's flow separation criterion (Stratford, 1959, “The Prediction of Separation of the Turbulent Boundary Layer,” J. Fluid Mech., 5(1), p. 1), the prediction accuracy is improved significantly. The effect of adverse pressure gradient flow on the flashback limits in 2 deg and 4 deg diffusers is also captured adequately by coupling the model to flow simulations and taking into account the increased flow separation tendency in diffuser flow. Future research will focus on further experimental validation and direct numerical simulations to gain better insight into the role of the quenching distance and turbulence statistics.

References

1.
United Nations Framework Convention on Climate Change
,
2015
, “
The Paris Agreement
,” United Nations Framework Convention on Climate Change, New York, accessed Oct. 4, 2020, unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement
2.
European Union
,
2020
, “
EU Climate Strategies & Targets: 2050 Long-Term Strategy
,” European Union, Brussels, Belgium, accessed Oct. 4, 2020, https://ec.europa.eu/clima/policies/strategies/2050_en
3.
International Energy Agency
,
2018
, “
World Energy Outlook 2018
,” International Energy Agency, Paris, France, accessed Oct. 4, 2020, webstore.iea.org/world-energy-outlook-2018
4.
Gils
,
H. C.
,
Scholz
,
Y.
,
Pregger
,
T.
,
Luca de Tena
,
D.
, and
Heide
,
D.
,
2017
, “
Integrated Modelling of Variable Renewable Energy-Based Power Supply in Europe
,”
Energy
,
123
, pp.
173
188
.10.1016/j.energy.2017.01.115
5.
Michalski
,
J.
,
Bünger
,
U.
,
Crotogino
,
F.
,
Donadei
,
S.
,
Schneider
,
G. S.
,
Pregger
,
T.
,
Cao
,
K. K.
, and
Heide
,
D.
,
2017
, “
Hydrogen Generation by Electrolysis and Storage in Salt Caverns: Potentials, Economics and Systems Aspects With Regard to the German Energy Transition
,”
Int. J. Hydrogen Energy
,
42
(
19
), pp.
13427
13443
.10.1016/j.ijhydene.2017.02.102
6.
Marek
,
C.
,
Smith
,
T.
, and
Kundu
,
K.
,
2005
, “
Low Emission Hydrogen Combustors for Gas Turbines Using Lean Direct Injection
,”
AIAA
Paper No. 2005-3776.https://ntrs.nasa.gov/citations/20080002274
7.
Funke
,
H. H. W.
,
Beckmann
,
N.
, and
Abanteriba
,
S.
,
2019
, “
Development and Testing of a FuelFlex Dry-Low-NOx Micromix Combustor for Industrial Gas Turbine Applications With Variable Hydrogen Methane Mixtures
,”
ASME
Paper No. 2019-90095.10.1115/GT2019-90095
8.
Asai
,
T.
,
Akiyama
,
Y.
, and
Dodo
,
S.
,
2017
,
Development of a State-of-the-Art Dry Low NOx Gas Turbine Combustor for IGCC With CCS
,
IntechOpen
,
London, UK
.
9.
Bullard
,
T.
,
Steinbrenner
,
A.
,
Stuttaford
,
P.
,
Jansen
,
D.
, and
de Bruijne
,
T.
,
2018
, “
Improvement of Premixed Gas Turbine Combustion System Fuel Flexibility With Increased Hydrogen Consumption in a Renewable Market Place
,”
ASME
Paper No. GT2018-75553.10.1115/GT2018-75553
10.
Larfeldt
,
J.
,
Anderson
,
M.
,
Larsson
,
A.
, and
Moell
,
D.
,
2017
, “
Hydrogen Co-Firing in Siemens Low NOx Industrial Gas Turbines
,”
Power-Gen Europe
, Cologne, Germany, June 27–29.https://www.semanticscholar.org/paper/Hydrogen-Co-Firing-in-Siemens-Low-NOX-Industrial-Larfeldt/37fd8e07212bf1e60f6db535d6e422b11880b816
11.
Reichel
,
T. G.
,
Terhaar
,
S.
, and
Paschereit
,
O.
,
2015
, “
Increasing Flashback Resistance in Lean Premixed Swirl-Stabilized Hydrogen Combustion by Axial Air Injection
,”
ASME J. Eng. Gas Turbines Power
,
137
(
7
), p. 071503.10.1115/1.4029119
12.
Mayer
,
C.
,
Sangl
,
J.
,
Sattelmayer
,
T.
,
Lachaux
,
T.
, and
Bernero
,
S.
,
2012
, “
Study on the Operational Window of a Swirl Stabilized Syngas Burner Under Atmospheric and High Pressure Conditions
,”
ASME J. Eng. Gas Turbines Power
,
134
(
3
), p.
01031506
.10.1115/1.4004255
13.
Bothien
,
M. R.
,
Ciani
,
A.
,
Wood
,
J. P.
, and
Fruechtel
,
G.
,
2019
, “
Sequential Combustion in Gas Turbines: The Key Technology for Burning High Hydrogen Contents With Low Emissions
,”
ASME
Paper No. GT2019-90798.10.1115/GT2019-90798
14.
Lieuwen
,
T.
,
McDonell
,
V.
,
Santavicca
,
D.
, and
Sattelmayer
,
T.
,
2008
, “
Burner Development and Operability Issues Associated With Steady Flowing Syngas Fired Combustors
,”
Combust. Sci. Technol.
,
180
(
6
), pp.
1169
1192
.10.1080/00102200801963375
15.
Eichler
,
C.
,
2011
, “
Flame Flashback in Wall Boundary Layers of Premixed Combustion Systems
,”
Ph.D. thesis
, TU Munich, München, Germany.https://www.mw.tum.de/fileadmin/w00btx/td/Forschung/Dissertationen/Eichler.pdf
16.
Kalantari
,
A.
, and
McDonell
,
V.
,
2017
, “
Boundary Layer Flashback of Non-Swirling Premixed Flames: Mechanisms, Fundamental Research, and Recent Advances
,”
Prog. Energy Combust. Sci.
,
61
, pp.
249
292
.10.1016/j.pecs.2017.03.001
17.
Lewis
,
B.
, and
von Elbe
,
G.
,
1943
, “
Stability and Structure of Burner Flames
,”
J. Chem. Phys.
, 11(2), pp.
75
97
.10.1063/1.1723808
18.
Lin
,
Y.-C.
,
Daniele
,
S.
,
Jansohn
,
P.
, and
Boulouchos
,
K.
,
2013
, “
Turbulent Flame Speed as an Indicator for Flashback Propensity of Hydrogen-Rich Fuel Gases
,”
ASME J. Eng. Gas Turbines Power
,
135
(
11
), p.
111503
.10.1115/1.4025068
19.
Eichler
,
C.
,
Baumgartner
,
G.
, and
Sattelmayer
,
T.
,
2012
, “
Experimental Investigation of Turbulent Boundary Layer Flashback Limits for Premixed Hydrogen-Air Flames Confined in Ducts
,”
ASME J. Eng. Gas Turbines Power
, 134(1), p. 011502.10.1115/1.4004149
20.
Hoferichter
,
V.
,
2017
, “
Boundary Layer Flashback in Premixed Combustion Systems
,”
Ph.D. thesis
, TU Munich, München, Germany.https://www.researchgate.net/publication/320758625_Boundary_Layer_Flashback_in_Premixed_Combustion_Systems
21.
Gruber
,
A.
,
Chen
,
J. H.
,
Valiev
,
D.
, and
Law
,
C. K.
,
2012
, “
Direct Numerical Simulation of Premixed Flame Boundary Layer Flashback in Turbulent Channel Flow
,”
J. Fluid Mech.
,
709
, pp.
516
542
.10.1017/jfm.2012.345
22.
Endres
,
A.
, and
Sattelmayer
,
T.
,
2018
, “
Large Eddy Simulation of Confined Turbulent Boundary Layer Flashback of Premixed Hydrogen-Air Flames
,”
Int. J. Heat Fluid Flow
,
72
, pp.
151
160
.10.1016/j.ijheatfluidflow.2018.06.002
23.
Gruber
,
A.
,
Richardson
,
E. S.
,
Aditya
,
K.
, and
Chen
,
J. H.
,
2018
, “
Direct Numerical Simulations of Premixed and Stratified Flame Propagation in Turbulent Channel Flow
,”
Phys. Rev. Fluids
,
3
(
11
), p.
110507
.10.1103/PhysRevFluids.3.110507
24.
Hoferichter
,
V.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
,
2017
, “
Prediction of Confined Flame Flashback Limits Using Boundary Layer Separation Theory
,”
ASME J. Eng. Gas Turbines Power
,
139
(
2
), p.
021505
.10.1115/1.4034237
25.
Stratford
,
B. S.
,
1959
, “
The Prediction of Separation of the Turbulent Boundary Layer
,”
J. Fluid Mech.
,
5
(
1
), pp.
1
16
.10.1017/S0022112059000015
26.
Endres
,
A.
, and
Sattelmayer
,
T.
,
2019
, “
Numerical Investigation of Pressure Influence on the Confined Turbulent Boundary Layer Flashback Process
,”
Fluids
,
4
(
3
), p.
146
.10.3390/fluids4030146
27.
Pecnik
,
R.
,
Otero Rodriguez
,
G.
, and
Patel
,
A.
,
2018
, “RANS Channel,” Delft University of Technology, Delft, The Netherlands, accessed Oct. 4, 2020, https://github.com/Fluid-Dynamics-Of-Energy-Systems-Team/RANS_Channel
28.
Baumgartner
,
G. M.
,
2014
, “
Flame Flashback in Premixed Hydrogen-Air Combustion Systems
,”
Ph.D. thesis
, TU Munich, München, Germany.https://www.mw.tum.de/fileadmin/w00btx/td/Forschung/Dissertationen/baumgaertner15.pdf
29.
Markstein
,
G. H.
,
1964
,
Nonsteady Flame Propagation
, AGARDograph, Elsevier, Amsterdam, The Netherlands, Vol.
75
, pp.
5
14
.https://www.sciencedirect.com/bookseries/agardograph/vol/75/suppl/C
30.
Bechtold
,
J. K.
, and
Matalon
,
M.
,
2001
, “
The Dependence of the Markstein Length on Stoichiometry
,”
Combust. Flame
,
127
(
1–2
), pp.
1906
1913
.10.1016/S0010-2180(01)00297-8
31.
Turns
,
S. R.
,
2000
,
An Introduction to Combustion: Concepts and Applications
,
McGraw-Hill
,
New York
.
32.
Poinsot
,
T.
, and
Veynante
,
D.
,
2005
,
Theoretical and Numerical Combustion
, 2nd ed.,
RT Edwards
,
Philadelphia, PA
.
33.
Clanet
,
C.
, and
Searby
,
G.
,
1998
, “
First Experimental Study of the Darrieus-Landau Instability
,”
Phys. Rev. Lett.
,
80
(
17
), pp.
3867
3870
.10.1103/PhysRevLett.80.3867
34.
Aspden
,
A. J.
,
Day
,
M. S.
, and
Bell
,
J. B.
,
2011
, “
Characterization of Low Lewis Number Flames
,”
Proceedings of the Combustion Institute
, 33(1), pp.
1463
1471
.10.1016/j.proci.2010.05.090
35.
Kadowaki
,
S.
,
2001
, “
Flame Velocity of Cellular Flames at Low Lewis Numbers
,”
Combust. Sci. Technol.
,
162
(
1
), pp.
223
234
.10.1080/00102200108952142
36.
Launder
,
B. E.
,
Reece
,
G. J.
, and
Rodi
,
W.
,
1975
, “
Progress in the Development of a Reynolds-Stress Turbulence Closure
,”
J. Fluid Mech.
,
68
(
3
), pp.
537
566
.10.1017/S0022112075001814
37.
Spalding
,
D. B.
,
1961
, “
A Single Formula for the “Law of the Wall
,”
ASME J. Appl. Mech.
,
28
(
3
), pp.
455
458
.10.1115/1.3641728
38.
de Goey
,
L.
, and
ten Thije Boonkkamp
,
J.
,
1999
, “
A Flamelet Description of Premixed Laminar Flames and the Relation With Flame Stretch
,”
Combust. Flame
,
119
(
3
), pp.
253
271
.10.1016/S0010-2180(99)00052-8
39.
Chung
,
S.
, and
Law
,
C.
,
1988
, “
An Integral Analysis of the Structure and Propagation of Stretched Premixed Flames
,”
Combust. Flame
,
72
(
3
), pp.
325
336
.10.1016/0010-2180(88)90131-9
You do not currently have access to this content.