Abstract

Thermoacoustic instabilities, which arise due to the interaction between flames and acoustics, are sensitive to small changes to the system parameters. In this paper, we apply adjoint-based shape optimization to a 2D finite element Helmholtz solver to find accurately and inexpensively the shape changes that most stabilize a 2D thermoacoustic system in the linear regime. We examine two cases: a Rijke tube and a turbulent swirl combustor. Both systems exhibit an unstable longitudinal mode and we suppress the instability by slightly modifying the geometry. In the case of the turbulent swirl combustor, the sensitivities are higher in the plenum and in the burner than in the combustion chamber, mainly due to the effect of the mean temperature. In the cooler regions, the local wavelength is shorter, which means that geometry changes of a given distance have more influence than they do where the local wavelength is longer. This is the first time adjoint-based shape optimization is applied to 2D Helmholtz solvers in thermoacoustics, after being previously applied to low-order thermoacoustic networks. But Helmholtz solvers have an intrinsic advantage: they can handle complex geometries. The easy scalability of this method to complex 3D geometries makes this tool a strong candidate for the iterative design of thermoacoustically stable combustors.

References

1.
Rayleigh
,
L.
,
1878
, “
The Explanation of Certain Acoustic Phenomena
,”
Nature
,
18
(
455
), pp.
319
321
.10.1038/018319a0
2.
Chu
,
B.-T.
,
1965
, “
On the Energy Transfer to Small Disturbances in Fluid Flow (Part I)
,”
Acta Mech.
,
1
(
3
), pp.
215
234
.10.1007/BF01387235
3.
Juniper
,
M. P.
, and
Sujith
,
R. I.
,
2018
, “
Sensitivity and Nonlinearity of Thermoacoustic Oscillations
,”
Annu. Rev. Fluid Mech.
,
50
(
1
), pp.
661
689
.10.1146/annurev-fluid-122316-045125
4.
Mongia
,
H. C.
,
Held
,
T. J.
,
Hsiao
,
G. C.
, and
Pandalai
,
R. P.
,
2003
, “
Challenges and Progress in Controlling Dynamics in Gas Turbine Combustors
,”
J. Propuls. Power
,
19
(
5
), pp.
822
829
.10.2514/2.6197
5.
Schuermans
,
B. B. H.
,
Polifke
,
W.
, and
Paschereit
,
C. O.
,
1999
, “
Modeling Transfer Matrices of Premixed Flames and Comparison With Experimental Results
,”
ASME
Paper No. 99-GT-132.10.1115/99-GT-132
6.
Dowling
,
A. P.
, and
Stow
,
S. R.
,
2003
, “
Acoustic Analysis of Gas Turbine Combustors
,”
J. Propuls. Power
,
19
(
5
), pp.
751
764
.10.2514/2.6192
7.
Nicoud
,
F.
,
Benoit
,
L.
,
Sensiau
,
C.
, and
Poinsot
,
T.
,
2007
, “
Acoustic Modes in Combustors With Complex Impedances and Multidimensional Active Flames
,”
AIAA J.
,
45
(
2
), pp.
426
441
.10.2514/1.24933
8.
Poinsot
,
T.
,
2017
, “
Prediction and Control of Combustion Instabilities in Real Engines
,”
Proc. Combust. Inst
,
36
(
1
), pp.
1
28
.10.1016/j.proci.2016.05.007
9.
Magri
,
L.
, and
Juniper
,
M. P.
,
2013
, “
Sensitivity Analysis of a Time-Delayed Thermo-Acoustic System Via an Adjoint-Based Approach
,”
J. Fluid Mech.
,
719
, pp.
183
202
.10.1017/jfm.2012.639
10.
Rigas
,
G.
,
Jamieson
,
N. P.
,
Li
,
L. K. B.
, and
Juniper
,
M. P.
,
2016
, “
Experimental Sensitivity Analysis and Control of Thermoacoustic Systems
,”
J. Fluid Mech.
,
787
, p.
R1
.10.1017/jfm.2015.715
11.
Jamieson
,
N. P.
,
Rigas
,
G.
, and
Juniper
,
M. P.
,
2017
, “
Experimental Sensitivity Analysis Via a Secondary Heat Source in an Oscillating Thermoacoustic System
,”
Int. J. Spray Combust. Dyn
,
9
(
4
), pp.
230
240
.10.1177/1756827717696325
12.
Aguilar
,
J. G.
,
Magri
,
L.
, and
Juniper
,
M. P.
,
2017
, “
Adjoint-Based Sensitivity Analysis of Low-Order Thermoacoustic Networks Using a Wave-Based Approach
,”
J. Comput. Phys
,
341
, pp.
163
181
.10.1016/j.jcp.2017.04.013
13.
Magri
,
L.
,
Bauerheim
,
M.
,
Nicoud
,
F.
, and
Juniper
,
M. P.
,
2016
, “
Stability Analysis of Thermo-Acoustic Nonlinear Eigenproblems in Annular Combustors. Part II. Uncertainty Quantification
,”
J. Comput. Phys
,
325
, pp.
411
421
.10.1016/j.jcp.2016.08.043
14.
Silva
,
C. F.
,
Magri
,
L.
,
Runte
,
T.
, and
Polifke
,
W.
,
2017
, “
Uncertainty Quantification of Growth Rates of Thermoacoustic Instability by an Adjoint Helmholtz Solver
,”
ASME J. Eng. Gas Turbines Power
,
139
(
1
), p.
011901
.10.1115/1.4034203
15.
Juniper
,
M. P.
,
Magri
,
L.
,
Bauerheim
,
M.
, and
Nicoud
,
F.
,
2014
, “
Sensitivity Analysis of Thermo-Acoustic Eigenproblems With Adjoint Methods
,”
Proceedings of the Summer Program 2014, Center for Turbulence Research
, Stanford University, Stanford, CA, July 6–Aug. 1, pp.
189
198
.https://web.stanford.edu/group/ctr/Summer/SP14/06_Combustion/09_juniper.pdf
16.
Mensah
,
G. A.
, and
Moeck
,
J. P.
,
2017
, “
Acoustic Damper Placement and Tuning for Annular Combustors: An Adjoint-Based Optimization Study
,”
ASME J. Eng. Gas Turbines Power
,
139
(
6
), p.
061501
.10.1115/1.4035201
17.
Aguilar
,
J. G.
, and
Juniper
,
M. P.
,
2018
, “
Adjoint Methods for Elimination of Thermoacoustic Oscillations in a Model Annular Combustor Via Small Geometry Modifications
,”
ASME
Paper No. GT2018-75692.10.1115/GT2018-75692
18.
Mensah
,
G. A.
,
Orchini
,
A.
, and
Moeck
,
J. P.
,
2019
, “
Adjoint-Based Computation of Shape Sensitivity in a Rijke-Tube
,”
Proceedings of 23rd International Congress Acoustic
, Vol.
1
, Aachen, Germany, Sept. 9–13, pp.
5489
5496
.http://pub.dega-akustik.de/ICA2019/data/articles/000816.pdf
19.
Magri
,
L.
,
2019
, “
Adjoint Methods as Design Tools in Thermoacoustics
,”
ASME Appl. Mech. Rev
,
71
(
2
), p.
020801
.10.1115/1.4042821
20.
Juniper
,
M. P.
,
2018
, “
Sensitivity Analysis of Thermoacoustic Instability With Adjoint Helmholtz Solvers
,”
Phys. Rev. Fluids
,
3
(
11
), p.
110509
.10.1103/PhysRevFluids.3.110509
21.
Crocco
,
L.
,
1951
, “
Aspects of Combustion Stability in Liquid Propellant Rocket Motors Part I: Fundamentals. Low Frequency Instability With Monopropellants
,”
J. Am. Rocket Soc
,
21
(
6
), pp.
163
178
.10.2514/8.4393
22.
Rienstra
,
S. W.
, and
Hirschberg
,
A.
,
2004
,
An Introduction to Acoustics
,
Eindhoven University of Technology
,
Eindhoven, The Netherlands
.
23.
Ni
,
F.
,
2017
, “
Accounting for Complex Flow-Acoustic Interactions in a 3D Thermo-Acoustic Helmholtz Solver
,”
Ph.D. thesis
,
Institut National Polytechnique de
Toulouse, Toulouse, France
.https://oatao.univ-toulouse.fr/17930/
24.
Mensah
,
G. A.
,
2018
, “
Efficient Computation of Thermoacoustic Modes
,”
Ph.D. thesis
,
Technische Universität Berlin
,
Berlin, Germany
.https://depositonce.tu-berlin.de/bitstream/11303/9942/4/mensah_georg.pdf
25.
Hernandez
,
V.
,
Roman
,
J. E.
, and
Vidal
,
V.
,
2005
, “
SLEPc: A Scalable and Flexible Toolkit for the Solution of Eig
,”
ACM Trans. Math. Softw.
,
31
(
3
), pp.
351
362
.10.1145/1089014.1089019
26.
Alnæs
,
M. S.
,
Blechta
,
J.
,
Hake
,
J.
,
Johansson
,
A.
,
Kehlet
,
B.
,
Logg
,
A.
,
Richardson
,
C.
,
Ring
,
J.
,
Rognes
,
M. E.
, and
Wells
,
G. N.
,
2015
, “
The FEniCS Project Version 1.5
,”
Arch. Numer. Softw.
,
3
(
100
), pp.
9
23
.https://research.chalmers.se/en/publication/228672
27.
Logg
,
A.
,
Mardal
,
K.-A.
, and
Wells
,
G. N.
,
2012
,
Automated Solution of Differential Equations by the Finite Element Method
,
Springer
,
Berlin
.
28.
Geuzaine
,
C.
, and
Remacle
,
J.-F.
,
2009
, “
Gmsh: A 3-D Finite Element Mesh Generator With Built-in Pre- and Post-Processing Facilities
,”
Int. J. Numer. Methods Eng
,
79
(
11
), pp.
1309
1331
.10.1002/nme.2579
29.
Schmidt
,
S.
, and
Schulz
,
V.
,
2010
, “
Shape Derivatives for General Objective Functions and the Incompressible Navier-Stokes Equations
,”
Control Cybern.
,
39
(
3
), pp.
677
713
.https://www.researchgate.net/publication/242202208_Shape_Derivatives_for_General_Objective_Functions_and_the_Incompressible_Navier-Stokes
30.
Sokolowski
,
J.
, and
Zolesio
,
J.-P.
,
1992
,
Introduction to Shape Optimization
(Springer Series in Computational Mathematics, Vol.
16
),
Springer
,
Berlin, Heidelberg
.
31.
Delfour
,
M. C.
, and
Zolésio
,
J.-P.
,
2011
,
Shapes and Geometries: Metrics, Analysis, Differential Calculus, and Optimization, Second Edition
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
32.
Kungurtsev
,
P. V.
, and
Juniper
,
M. P.
,
2019
, “
Adjoint-Based Shape Optimization of the Microchannels in an Inkjet Printhead
,”
J. Fluid Mech.
,
871
, pp.
113
138
.10.1017/jfm.2019.271
33.
Brewster
,
J.
, and
Juniper
,
M. P.
,
2020
, “
Shape Sensitivity of Eigenvalues in Hydrodynamic Stability, With Physical Interpretation for the Flow Around a Cylinder
,”
Eur. J. Mech. B/Fluids
,
80
, pp.
80
91
.10.1016/j.euromechflu.2019.11.007
34.
Palies
,
P.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2010
, “
The Combined Dynamics of Swirler and Turbulent Premixed Swirling Flames
,”
Combust. Flame
,
157
(
9
), pp.
1698
1717
.10.1016/j.combustflame.2010.02.011
35.
Palies
,
P.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2011
, “
Nonlinear Combustion Instability Analysis Based on the Flame Describing Function Applied to Turbulent Premixed Swirling Flames
,”
Combust. Flame
,
158
(
10
), pp.
1980
1991
.10.1016/j.combustflame.2011.02.012
36.
Silva
,
C. F.
,
Nicoud
,
F.
,
Schuller
,
T.
,
Durox
,
D.
, and
Candel
,
S.
,
2013
, “
Combining a Helmholtz Solver With the Flame Describing Function to Assess Combustion Instability in a Premixed Swirled Combustor
,”
Combust. Flame
,
160
(
9
), pp.
1743
1754
.10.1016/j.combustflame.2013.03.020
37.
Avdonin
,
A.
,
Jaensch
,
S.
,
Silva
,
C. F.
,
Češnovar
,
M.
, and
Polifke
,
W.
,
2018
, “
Uncertainty Quantification and Sensitivity Analysis of Thermoacoustic Stability With Non-Intrusive Polynomial Chaos Expansion
,”
Combust. Flame
,
189
, pp.
300
310
.10.1016/j.combustflame.2017.11.001
38.
Avdonin
,
A.
,
Meindl
,
M.
, and
Polifke
,
W.
,
2019
, “
Thermoacoustic Analysis of a Laminar Premixed Flame Using a Linearized Reactive Flow Solver
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5307
5314
.10.1016/j.proci.2018.06.142
You do not currently have access to this content.